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Preface

This is an introduction to Euler Math Toolbox (EMT). The aim of this text is to

provide a good start into EMT. After reading this text, you should be able to �nd

your way through EMT with the help of the documentation and the reference.

If you want to see some examples �rst start with the �rst chapter. The second

chapter provides a thorough introduction to the user interface and the main features

of EMT. Subsequent chapter deal with details about various aspects of this mighty

program, such as planar or spacial plots, numerical analysis, symbolic mathematics,

complex numbers, regression analysis, sparse matrices, statistics, optimization and

the programming language of EMT.

EMT has been written for math at the University level, designed by a mathematician

with the frequent need for numerical and symbolic computations and graphical

representations of the results. An additional aim of EMT was to be useful on the

school level. The EMT language, combined with the Algebra system Maxima are

ideal tools for this purpose. Tasks of all levels can be performed with EMT and

its programming language. However, EMT is not a simple click and run system

presenting all tools in iconic form. So this introduction should be a big help.

EMT does not compete with Matlab. Both system started at about the same time

in the 80ies. But EMT was always an open system incorporating other open systems

(Maxima, Python, C, Povray) seamlessly under a common hood, while Matlab strove

to become the industry standard for numerical computations. The author believes

that advanced research should be done with open numerical libraries available freely

and for many programming languages. A gigantic closed system like Matlab is not

a good solution and hinders development.

For education in numerical analysis, EMT or Matlab are useful tools, but the knowl-

edge of a basic programming language is indispensable for a professional career. A

practical course in applied mathematics should also contain an introduction into nu-

merical programming with a real world programming language. EMT can be useful

for demonstrations and tests, however.
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Currently, the advanced version of EMT is only available for Windows. On Linux

or OSX, Wine can be used to run EMT with some restrictions. Plans for a Java

interface to EMT will depend on user demand and community help.

I wish to thank a lot of friends, users and developers, �rst of all my university for

giving me the opportunity to work on this project. Then I thank Eric Bouchar�e,

who ported EMT for Linux. Currently, I do not have the time to update his version

to the level of the Windows version. I also thank H.D. Gelli�en for his German

handbook. Many users have contributed to Euler with programs, notebooks and

bug hints, especially Alain Busser, Radovan Omorjan and Horst Vogel. I also thank

the developers of Maxima for making their system available for EMT.

Have a good and successful time!

Ren�e Grothmann

Eichst�att 2019

The EMT web site is at http://www.euler-math-toolbox.de



Chapter 1

First Examples

1.1 Get Started

You should start with the tutorials that are installed with EMT. They are available

in HTML form to be read in the browser, and they are contained in the installation

as notebooks you can load into the program and work with. If you want to save

your changes you need to save a copy into a directory with write access, of course.

EMT creates a directory for this purpose in your documents folder.

Currently, the following introductory notebooks are available.

� Overview and Introduction

This is a �rst welcome and an overview of Euler which shows the potential of

the program. Have a look into this tutorial to start with EMT.

� A Crash Course in Euler

This tutorial contains a quick introduction for impatient users or for anyone

who is already familiar with similar programs.

� Interest Rates

A Demo.

� Monte-Carlo Simulation

A Demo.

� Plots in Euler

A Demo.
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10 CHAPTER 1. FIRST EXAMPLES

� The Syntax of Euler

Contains everything you need to know about the syntax of commands and

expressions, including the symbolic expressions.

� The Matrix Language

The matrix language is the basic tool for e�cient computations in EMT. For

short and quick ways to solve problems you should be familiar with this way

to handle numerical computations.

� Complex Numbers

Besides real numbers, EMT can handle complex numbers, �nd zeros of com-

plex polynomials, and solve complex equations.

� Intervals

Interval arithmetic, together with the exact scalar product, is the main tool

to get guaranteed inclusions for solutions of linear and non-linear equations or

di�erential equations.

� Maxima

This tutorial introduces symbolic expressions and the interface to Maxima.

EMT seamlessly incorporates Maxima using a special syntax for symbolic ex-

pressions and functions.

� More about Maxima

Some more details about Maxima.

� 2D Plots

All about plots of one variable, curves, or implicit plots in the plane.

� 3D Plots

All about plots of two variables, surfaces, or implicit plots in the 3D space.

� Linear Algebra

Shows how to solve linear systems, compute least square �ts, eigenvalues or

singular values, using numerical and symbolic arithmetic.

� Numerical Analysis

EMT can solve non-linear equations and systems, or integrals.

� Di�erential Equations

Shows numerical and symbolic solutions of di�erential equations

� Input and Output

Read and write from �les or from the Internet.
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� Statistics

Statistics is a perfect application for EMT. This tutorial introduces statistical

distributions, functions, and special plots for statistics. Moreover, it shows

how to do Monte-Carlo simulations in EMT.

� Optimization

A tutorial about linear, non-linear, and integer optimization. EMT contains

the e�cient LPSOLVE package for linear optimization.

� Large Systems

EMT can handle large and sparse systems. The tutorial contains examples

connected to graph theory.

� Fast Fourier Transform

This explains FFT and how to produce or analyze sound in EMT.

� Programming Language

Programming Euler

� Compiled Code

A tutorial about C code in Euler. Euler comes with the TinyC compiler.

� Python in Euler

Python can be used as a scripting language in EMT. Functions in Python

can be called from EMT and vice versa. This includes might packages like

MatPlotlib.

� Povray and Euler

Tutorial on using Povray from Euler with many examples.

� Media Files

A collection of examples generating, loading and saving sounds and images.

� Geometry Explains numerical and symbolic functions for geometry in EMT.

In this �rst chapter, you will see some simple examples to introduce the main features

of EMT and Maxima. I assume for now that you are able to handle the interface of

the program. The main documentation contains a page introducing the interface in

all details.

For now, it su�ces to say that you can enter commands in the text window at the

prompt and run these commands with the enter key. You can edit your commands

at any time and run them again. The cursor does not have to be at the end of the

command line for this. If you want to execute all commands in a section once more,

press shift-return. Copy and paste will also work as usual.
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If you need help or more information on any of the commands used in this intro-

duction, you can either look into the full HTML reference of EMT and Maxima, or

try the help system (available with F1 or a double click on any command in EMT).

There you can enter any command in the search line, or you can double click on a

command in the text window or the help text to search for this command.

1.2 Symbolic versus Numerical Computations

With EMT and Maxima, you hold two tools in your hand, one for fast numerical,

and the other for exact symbolic arithmetic. Sometimes it is better to use one tool,

and sometimes the other. Both tools can work together to give you even better

answers. By default, the numerical part of EMT is the main tool and Maxima

commands need a special trigger in the command line. But it is also possible, to

use EMT as an interface for Maxima. Moreover, there is a very easy syntax to use

symbolic expressions and functions in EMT seamlessly.

Assume you want to do some basic computations with fractions. You get di�erent

results in EMT and Maxima. With EMT you get a oating point result with about

16 digits accuracy (the IEEE standard), printed with 12 digits by default.

>1+1/2+1/3+1/4 // compute the fraction with Euler

2.08333333333

Maxima computes the result as a fraction in its \in�nite" integer arithmetic.

>& 1+1/2+1/3+1/4 // compute the fraction with Maxima

25

--

12

The Maxima command starts with & optionally followed by a blank. The character

& starts a symbolic expression. It is possible to call Maxima directly. But for this

introduction, we use only symbolic expressions which are the right way to integrate

symbolic computations into EMT seamlessly.

You can also print decimal oats as fractions in EMT, and convert fractions to oat

in Maxima.
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>fracprint(1+1/2+1/3+1/4) // print as fraction in Euler

25/12

>& float(1+1/2+1/3+1/4) // convert to float in Maxima

2.083333333333334

Why then two programs? Because Maxima is a lot slower than EMT, when it

comes to elaborate numerical stu�. Moreover, EMT has some numerical algorithms

Maxima does not have. On the other side, Maxima does a lot of things EMT cannot

do. The two programs complement each other very well.

EMT consists of a numerical system and a symbolic system. The latter is

handled by Maxima in the background. Symbolic computations, if feasible,

are very slow, but accurate.

Let us try some more computations in EMT or Maxima. We compute

1000X
k=1

1

k

in three ways. First in EMT, then as a fraction in Maxima, and �nally as a float

in Maxima. The fractional result is not very useful. You might even have problems

to spot the \/".

>sum(1/(1:1000)) // fast numerical result in Euler

7.48547086055

>& sum(1/k,k,1,1000) // fractional result in Maxima

533629132822947850455910456240429804096524722803842600971013492484562688\

894971017575060979019850356914090887315504680983784421721178850094643023443265\

660225021002784256328520814055449412104425101426727702947747127089179639677796\

104532246924268664688882815820719848971051107968732493191555293970175089315645\

199760857344730141832840117244122806490743077037366831700558002936592350885893\

60235285852808160759574737836655413175508131522517/712886527466509305316638415\

571427292066835886188589304045200199115432408758111149947644415191387158691171\

781701957525651298026406762100925146587100430513107268626814320019660997486274\

593718834370501543445252373974529896314567498212823695623282379401106880926231\

770886197954079124775455804932647573782992335275179673524804246363805113703433\

121478174685087845348567802188807537324992199567205693202909939089168748767269\

7950931603520000

>&sum(1.0/k,k,1,1000) // float sum in Maxima

7.485470860550343
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In the last command, Maxima treated 1.0 as a oat, and will do the whole compu-

tation in oating point.

Maxima can often compute exact results, where EMT only gives a oating point

answer.

>sin(45°)

0.7071067811865

>&sin(pi/4)

1

-------

sqrt(2)

The answers are equivalent, but there is no easy way to get the Maxima result using

the numerical kernel of EMT. Anyways, the symbolic result is useful only for pure

mathematics.

Another example is the following in�nite harmonic series, where EMT can only

compute an approximation, but Maxima knows the exact value.

>&sum(1/k^2,k,1,inf)|simpsum, &float(%)

2

pi

---

6

1.644934066848226

>longest sum(1/(1:1000000)^2)

1.64493306684877

The syntax of the �rst command line involves the ag simpsum to make Maxima

evaluate the sum. The second symbolic command in this line uses the % sign to refer

to the previous result. The second command contains the operator longest which

prints the result to 16 digits.

There are many ways, EMT and Maxima can interact. The most easy way is by

symbolic expressions. Moreover, Maxima can be used to write e�cient functions

in EMT whenever a symbolic formula is involved. More on this in the following

sections.
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1.3 Numerical Examples

We want to present a few examples for numerical computations with EMT. So we

won't use Maxima for these examples. They are all done by the numerical kernel of

EMT.

For a �rst example, we observe a ball at an apparent diameter of � = 12:5� and we

know that its true diameter is d = 100 meter. How far away is the center of the

ball? The formula for that is of course

r tan

�
�

2

�
=

d

2
:

Thus we get the following answer.

>a=12.5°; d=100; (d/2)/tan(a/2)

456.54674095

We have used two variables here, and several command in one line. More on that

later. The answer is printed with 12 digits which is not a sensible way to print this

result since the input data are not that exact. We can change the output format

at any time or we can use the function print which has parameters to limit the

number of digits after the comma.

>a=12.55°; d=99.5m; print((d/2)/tan(a/2),1)

452.4

>a=12.45°; d=100.5m; print((d/2)/tan(a/2),1)

460.7

To get a feeling for the accuracy, we have computed two extreme values under the

assumption that the input is correct only to the given digits.

By the way, EMT has an interval arithmetic to handle this situation. Interval

arithmetic is not widely known. But it is sometimes very nice to have.

>a=12.5°±0.05°; d=100±0.5; (d/2)/tan(a/2)

~452.4,460.7~

If things get more involved we might want to de�ne a function. The easiest functions

in EMT are one-line functions. We implement the function

lc(v) =

s
1� v2

c2

were c is the speed of light. This constant is de�ned in EMT as a unit. Units always

end with a dollar character.
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>cl = cLight$

299792458

>function lc(v) := sqrt(1-v^2/cl^2)

>lc(cl/4)

0.968245836552

That is the relativistic contraction at one quarter of light speed. If we have units we

want to convert from and to these units in an easy way. EMT uses the operator ->

for this. Moreover, we demonstrate that units can simply be appended to numbers

and the result will be converted into IS (international standard).

Another feature of EMT output is the special space character. It can split numbers

into groups of digits. You can enter this space with Ctrl-Space. The normal space

will not work.

>lc(100 000 km/h) // use Ctrl-Space for the spaces!

0.999999995707

>cl -> " km/h"

1079252848.8 km/h

>print(cl->km/h,0,sep=" ",unit=" km/h")

1 079 252 849 km/h

The laster number is the speed of light in kilometer per second. EMT has also

non-metric units like miles, feet and many more.

The matrix language of EMT allows to apply functions and operators to vectors

element by element. More details will be given in later chapters. For now, let us

evaluate

f(x) =
10X
n=1

xn

n2
:

We need a vector of numbers 1; : : : ; n which can easily be generated in EMT, and

we need the function sum which sums a vector.

>n=1:10

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>n^2

[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

>0.5^n

[0.5, 0.25, 0.125, 0.0625, 0.03125, 0.015625, 0.0078125,

0.00390625, 0.00195313, 0.000976563]

>sum(0.5^n/n^2)

0.582233518878
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Figure 1.1: Plot of f(x) in [�1:5; 1:5]

To make that a function that does work for vector input, but is de�ned for scalar

input, we de�ne a vectorized function with the keyboard map. We can plot this

function with plot2d and the name of the function as an argument.

>function map f(x) := sum(x^(1:20)/(1:20)^2)

>f(0:0.1:1)

[0, 0.102618, 0.211004, 0.32613, 0.449283, 0.582241, 0.727586,

0.889374, 1.07472, 1.29823, 1.59616]

>plot2d("f",-1.5,1.5):

We can even use the function in numerical algorithms. EMT has numerical algo-

rithms of many kinds. In the following, we demonstrate the integral and the solver.

>integrate("f",0,1)

0.643782291532

>sum(1/((1:20)^2*(2:21))) // the exact value

0.643782291532
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>solve("f",1,y=1), f(%) // solve and check f(x)=1

0.761556096695

1

The correct value for the integral is

Z 1

0
f(t) dt =

20X
k=1

1

k2 (k + 1)
:

EMT get this value very accurately using an adaptive Gauss method in the func-

tion integrate. The solution of f(x) = 1 can be determined with solve and the

parameter y=1. The solver needs a start value and uses a Secant algorithm to �nd

the solution. Note that the % in the last command refers to the previous result.

Figure 1.2: Solution of y0 = sin(1 + y)

Di�erential equations can also be solved by EMT using the LSODA algorithm or

Runge-Kutta formulas. For a try, let us solve

y0(x) = sin(1 + y(x)); y(0) = 0:

We solve it in the interval [0; 20].

>x=0:0.01:20;

>function f(x,y) := sin(1+y);

>y=ode("f",x,0);

>aspect(2); plot2d(x,y):
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For now, these are enough examples of the numerical part of EMT to show that

numerical results are useful and indispensable, and they are easy to get in EMT.

We did not discuss the big topic of numerical linear algebra or optimization. The

program includes a lot of tools for these problems too.

1.4 Variables

If values or results are needed later, you need to assign them to variables. You can

use := or =. Symbolic variables are set with &=.

>a := 2 // numerical variable (alternatively a=2)

2

>a &= x^2 // symbolic variable

2

x

One should be aware and I like to stress it already at this point that a numerical

variable is not known in symbolic expressions. So, even if x had a numerical value

in EMT its value could not be used in any symbolic expression.

If we want to set a numerical value to a variable which can be used in symbolic

expressions there is &:=. In this case, the variable can no longer be used as a

symbolic variable, of course.

>a &:= 1.5

1.5

>& a^2

9

-

4

>a^2

2.25

The symbolic value will be a close rational approximation as you see. There is

another way to use a numerical number from EMT in Maxima: Refer to the value

of a variable as @variable in symbolic expressions.
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>& @a^2

2.25

To suppress the printing of results use ; after the command. To print the result of

one command in an command line using several command, use a comma.

>a:=2; a^3-a

6

>a:=2, a^3-a

2

6

A variable with a value is of course replaced by the value. That is true for symbolic

expressions too. To remove a value from a variable, use remvalue.

>a &= 4

4

>& a^2

16

>remvalue(a)

>& a^2

2

a

To assign a value to a variable in a symbolic expression for just one computation,

there is the | operator or with. The previous value of the variable a is not used

here.

>& a^2*b | a=4 | b=2

32

>& a^2*b with a=4

16 b
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>& a^2*b with [a=4,b=2]

32

It is good to know some internals of EMT. The Maxima system runs in the back-

ground and has its own variables. But &= de�nes the variable in Maxima. In EMT,

such variables are strings, which print in symbolic form using the formatting of

Maxima.

Often, we wish to de�ne a variable with a numerical value in Maxima and in EMT.

As already mentioned above, this is done with &:=.

>a &:= 4;

>&sin(a), &float(sin(a))

sin(4)

- 0.75680249530793

>sin(a)

-0.756802495308

1.5 Expressions and Symbolic Expressions

All non-symbolic expressions in EMT are stored in strings. EMT can evaluate

expressions. It uses this feature in many places. This avoids having to write a

function for simple calculations.

The following examples apply some numerical methods to simple expressions. For

these methods to work properly, the expressions must be expressions in "x" (resp.

"x" and "y"). That is a useful convention which greatly simpli�es handling expres-

sions.

By convention, the default variables in expressions for numerical methods

in EMT are x, y, z.

Of course, there are ways to use other variables as arguments.
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>solve("cos(x)-x",1) // solve cos(x)=x near 1

0.739085133215

>integrate("exp(-x^2)/sqrt(pi)",0,10) // numerical integration

0.5

>plot2d("x^3-x",-1,1); // 2D plot

>plot3d("x*y"); // 3D plot

If symbolic manipulations like di�erentiation and integration are necessary, we use

the symbolic expressions. Of course, this means that Maxima has to process these

expressions.

>&diff(log(x)/x^2,x) // symbolic derivative

1 2 log(x)

-- - --------

3 3

x x

>&integrate(log(x)/x^2,x,1,E) // symbolic integration

- 1

1 - 2 E

>expr &= x^x;

>solve(&diff(expr,x),0.5) // numerical solution of expr’(x)=1/2

0.367879441171

>plot2d(&x^3-x,r=2); // plots a symbolic expression

>plot2d(&diff(x^3-x,x),color=5,add=1): // plot will appear below

The plot of the function appears below the plot command in the EMT notebook

due to the : after the command. You can see the plot in �gure 1.3. We will later

discuss plots.

The functions in EMT which accept expressions evaluate the expression in the fol-

lowing ways.

>expr:="sin(x)*x"; expr(1.2)

1.11844690316

>"x*y"(2,3)

6

This works for numerical or symbolic expressions, as long as the variables are x, ym

z. Other variables must either be global or passed by assigned arguments.
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Figure 1.3: Plot of x3 � x and its derivative

>"a*x^2"(6,a=2)

72

To evaluate a symbolic expression in a symbolic way, use with.

>df &= diff(x/(x^2+1),x)

2

1 2 x

------ - ---------

2 2 2

x + 1 (x + 1)

>&factor(df with x=a+1)

a (a + 2)

- ---------------

2 2

(a + 2 a + 2)
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There is a quick way to evaluate a symbolic expression numerically. If the sym-

bolic expression starts with &: it is �rst evaluated by Maxima. Then the result is

evaluated numerically.

>&:integrate(x*log(x),x,0,2)

0.38629436112

>integrate("x*log(x)",0,2) // numerical integration

0.38629436112

Note that the numerical integration is as accurate as the symbolic result. It is faster,

however, unless the symbolic integration is done only once and evaluated in many

points.

1.6 Discussing Functions

For an example, let us discuss a one-dimensional function. EMT can very nicely

cooperate with Maxima for this purpose. For simple functions, which can be solved

analytically, Maxima will be the tool of �rst choice.

First, we plot the function in EMT. Maxima has a very nice plotting tool too, but

EMT is my choice for plots.

>expr &= log(x)/x;

>plot2d(expr,a=0.1,b=10,c=-3,d=3):

The most elementary form of the plot2d command in EMT can handle a single

expression in x, or the name of a function f(x) de�ned in EMT (more on functions

later). It can also handle data plots, bar plots, point plots, curves in the plane, and

much more. We set options for this command (like the plot limits) using assigned

arguments. Remember that the : after the plot command inserts the plot into the

notebook window.

Storing the function as a symbolic expression has the advantage that we can use it

easily in Maxima and in EMT. We can �nd the maximum of the function, or the

inection point, in symbolic form. The constant E is the Euler constant e, of course.

>&solve(diff(expr,x)=0,x)

[x = E]
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Figure 1.4: Simple plot of log(x)=x

>&solve(diff(expr,x,2)=0,x)

3/2

[x = E ]

Many exact integrals can be computed with Maxima. TryZ 1

1

log(x)

x2
dx:

>&integrate(log(x)/x^2,x,1,inf)

1

We can also use the expression as a numerical expression. E.g., the solution of

log x

x
= �3



26 CHAPTER 1. FIRST EXAMPLES

has no closed form. Consequently, Maxima cannot solve it. But with the right

starting point we can �nd a numerical solution with the Secant method and the

function solve, or with the Bisection method.

>&solve(expr=-3,x)

log(x)

[x = - ------]

3

>solve(expr,0.0001,y=-3)

0.349969631655

>bisect(expr,epsilon,1,y=-3)

0.349969631654

Besides storing expressions in strings, it is possible to de�ne functions in EMT and

Maxima. The syntax is similar. The following is a numerical function in EMT.

>function f(x) := x^3-x // numerical function

Functions with symbolic expressions can be de�ned in both worlds simultaneously.

We call these functions symbolic functions.

>function f(x) &= diff(x^x,x) // define a symbolic function

x

x (log(x) + 1)

>f(5) // use in Euler numerically

8154.49347636

>&f(a) // and in a symbolic expression

a

a (log(a) + 1)

If an expression string is de�ned only in EMT it can still be used in Maxima using the

@... syntax. The same syntax can be used to de�ne a function from an expression.

>expr := "x^3-x"; // defined only in EMT

>&diff(@expr,x) // use in symbolic expression

3*x^2-1

>function f(x) := @expr // make it a function



1.6. DISCUSSING FUNCTIONS 27

Of course, the previous examples in this section could have been computed by hand

easily. So we try a problem, which involves a lot of computations. While the student

still has to know how to solve it, tedious hand computations can be avoided using

a tool like Euler Math Toolbox.

Example

The following is a more complicated example to show the bene�ts that you get from

symbolic systems. While the computations can be done by hand they are tedious

and error-prone.

We compute the paraboloid with maximal volume, which �ts into a cone. Since this

paraboloid must obviously touch the cone, and we assume it to be symmetric with

respect to the center axis of the cone (it is not obvious why we can do this!), we

compute the symmetric parabola, which touches the function 1� jxj �rst.

Figure 1.5: Maximal paraboloid below a cone

We search the x value, where a symmetric parabola ax2 + b has derivative �1.

>function p(x,a,b) &= a*x^2+b

2

a x + b

>sx &= solve(diff(p(x,a,b),x)=-1,x)
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1

[x = - ---]

2 a

Now, we need to solve p(x) = 1 � x for a and b. Instead of inserting the value

�1=(2a) by hand, we use with. We get an equation, which we can solve for a.

>&p(x,a,b)=1-x, sa &= solve(% with sx,a)

2

a x + b = 1 - x

1

[a = -------]

4 b - 4

Figure 1.6: Touching parabolas
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With this knowledge, we de�ne the touching parabolas ptb(x). Using the EMT

matrix language, we can plot the parabolas for several values of b at once.

>function pt(x,b) &= at(p(x,a,b),sa)

2

x

------- + b

4 b - 4

>b:=(0.1:0.1:0.9)’;

>plot2d("1-abs(x)",r=1); plot2d(&pt(x,b),>add):

Now we rotate these parabolas around the y axis and compute the volumes of the

paraboloids. To be able to do this, we need the inverse function, which will be the

radius of the cut through the paraboloid at height y.

>sol &= solve(y=pt(x,b),x)

2 2

[x = - 2 sqrt(b y - y - b + b), x = 2 sqrt(b y - y - b + b)]

>function ptinv(y,b) &= rhs(sol[2])

2

2 sqrt(b y - y - b + b)

With this, we can compute the volume, and �nally maximize it.

>function F(b) &= integrate(pi*ptinv(y,b)^2,y,0,b)

3 2

- 2 pi (b - b )

>&solve(diff(F(b),b)=0,b)

2

[b = -, b = 0]

3

>F(2/3)

0.93084226773
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The details of this computation, especially the Maxima syntax, are not self evi-

dent. For a closer explanation, have a look into the chapter about Maxima in this

introduction.

1.7 Solving Equations

Maxima has the solve command to solve an equation or a system of equations. It

is able to handle most school book examples, and goes very much beyond it. In the

following example, we get complex results.

>sol &= solve(x^2-x+1,x)

1 - sqrt(3) I sqrt(3) I + 1

[x = -------------, x = -------------]

2 2

>&expand(x^2-x+1 with sol[2])

0

To insert the solutions in subsequent expressions, use with. Here, we inserted the

second solution of the form x=... into the equations. We had to use expand to

simplify this to 0.

However, solve cannot solve all equations, not even all polynomial equations. Then,

we have to be content with numerical solutions. In the following example, we use

the numerical solver of EMT to compute the zero, which we can clearly see in the

plot.

>plot2d("x^6-10*x+1"):

>longest solve("x^6-10*x+1",0,1)

0.1000001000006

To show more digits of the result, we are using the operator longest. There are

more operators of this kind. Try shortest or fraction.

EMT can also use interval arithmetic to get a close and guaranteed inclusion of

the result. Since the interval Newton method needs the derivative for this, it calls

Maxima.
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Figure 1.7: y = x6 � 10x+ 1

>mxminewton("x^6-10*x+1",~0,1~)

~0.10000010000059993,0.10000010000060007~

Systems of equations can be linear or non-linear. Both can be handled by Maxima

in the same way.

>&solve([a+b=4,a-2*b=3],[a,b])

11 1

[[a = --, b = -]]

3 3

>&solve([a*b*c=1,a^2+b^2+c^2=3,a+b+c=3],[a,b,c])

[[a = 1, b = 1, c = 1]]

If there are in�nitely many solutions Maxima delivers a parametric representation.

The following example has three equations with three unknowns, but one equation

depends on the other two.
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>& solve([a+2*b+3*c=6,4*a+5*b+6*c=15,7*a+8*b+9*c=24],[a,b,c])

[[a = %r1, b = 3 - 2 %r1, c = %r1]]

EMT has also numerical methods to solve equations. Linear systems can be written

with a matrix as Ax = b, and are solved with \. This works for rather large matrices.
Let us try the example above.

>A=[1,1;1,-2]

1 1

1 -2

>b=[4;3]

4

3

>fraction A\b

11/3

1/3

If there is no solution, we can use fit or svdsolve. , which will yield the best possible

value (minimizing kAx� bk). In case of more than one solution of the minimization

problem svdsolve will return the solution with the minimal norm.

>A=[1,2;3,4;1,2]

1 2

3 4

1 2

>fit(A,[1;1;1])

-1

1

A special application of data �tting are polynomial �ts. In the following example,

we �t a polynomial of degree 1 (a line) to data in the plane.

>x=0:5; y=5-2*x+normal(size(x));

>p=polyfit(x,y,1)

[3.89899, -1.70281]

>plot2d(x,y,>points,a=0,b=5,c=-5,d=5); ...

>plot2d("polyval(p,x)",>add,color=red):
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Figure 1.8: Linear Regression Line

Non-linear systems can often be solved with the Broyden algorithm. We try

xy = 1; x2 + y2 = 4:

For the Broyden algorithm, we need to de�ne a vector valued function �rst. The

algorithm seeks the zero of the function. We use a symbolic vector expression to

de�ne the symbolic function. The function parameters f([x,y]) take care, that the

function can be used for two scalar values (f(x,y)), or a vector value (f(v) with a

vector v).

>expr &= [x*y-1,x^2+y^2-4]

2 2

[x y - 1, y + x - 4]

>function f([x,y]) &= expr

2 2
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[x y - 1, y + x - 4]

>broyden("f",[1,2])

[0.517638, 1.93185]

We can also use the very stable Nelder-Mead minimization method in this case. The

Nelder-Mead algorithm minimizes functions.

>function g(v) := norm(f(v))

>neldermin("g",[1,2])

[0.517638, 1.93185]

Of course, this example can be computed by hand too. Maxima can �nd all four

solutions. Our solution is the fourth solution. To get its numerical value, we evaluate

the vector [x,y] using the solution, and evaluate the result in EMT.

>sol &= solve(expr,[x,y]); &sol[4], %()

1

[x = sqrt(2 - sqrt(3)), y = -----------------]

sqrt(2 - sqrt(3))

[0.517638, 1.93185]

Note the evaluation of the expression in the last line with %(). % refers to the

previous result which in this case is a symbolic expression. The x = part is ignored.

To �nd the minimal values of a function f , we can use the Nelder-Mead method to

�nd the zero of the gradient by minimizing its norm. This will succeed, even if the

Jacobian of the gradient (the Hessian matrix fo f) is singular. However, the numer-

ical stability of this procedure is not very good. This is due to the mathematical

fact the minimum of a smooth function is not well determined by the values of the

function.

>function f([x,y]) &= x^4+(y-1)^4

4 4

(y - 1) + x

>function gradf([x,y]) &= gradient(f(x,y),[x,y])
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3 3

[4 x , 4 (y - 1) ]

>function h(v) := norm(gradf(v))

>nelder("h",[1,1])

[2.92159e-005, 1.00002]

>&solve(gradf(x,y))[1]

[y = 1, x = 0]

1.8 Vectors and Matrices

One good reasons to use EMT is its matrix language. Of course, EMT can compute

linear algebra expressions. But the main advantage is that EMT can use vectors to

compute and hold tables of values.

The basic rule is the following:

If any EMT function or operator with scalar arguments and a scalar result

is applied to vectors or matrices, it is applied to each element and the result

is a vector or matrix of the same size.

This is called vectorization. The operators and functions of EMT vectorize to their

arguments.

>v=1:5

[1, 2, 3, 4, 5]

>v^2

[1, 4, 9, 16, 25]

>v*v // element-wise multiplication

[1, 4, 9, 16, 25]

>sqrt(v)

[1, 1.41421, 1.73205, 2, 2.23607]

Let us compute a vector of values of the binomial function, and compute the sum,

the mean and the maximal value of the vector.
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>n=0:20; b=bin(20,n); // Compute bin(20,0) ... bin(20,20)

>plot2d(n,b,points=1,yl="bin(20,n)",xl="n",>smaller):

>sum(b), 2^20 // the sum is 2^20

1048576

1048576

>sum(n*b/2^20) // expected value

10

>max(b)

184756

Figure 1.9: bin(20,n)

All the built-in procedures in EMT are applied to matrix input elementwise. If the

parameters are a vector and matrix, the elements are taken in a natural way. E.g.,

if v is a column vector, and w is a row vector the A = v � w is the matrix

A[i; j] = v[i] � w[j]:
Of course, this is not the matrix product. It is called a tensor product of the two

vectors. The matrix product is computed with the dot . in EMT.

>format(5,0); A=[1,2;3,4]
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1 2

3 4

>A*A

1 4

9 16

>A.A

7 10

15 22

Example

We compute a table of multiplication up to 10. The expression n’ returns the

transposed vector of the row vector n, a column vector.

>n=1:10; A=n’*n;

>format(5,0); A,

1 2 3 4 5 6 7 8 9 10

2 4 6 8 10 12 14 16 18 20

3 6 9 12 15 18 21 24 27 30

4 8 12 16 20 24 28 32 36 40

5 10 15 20 25 30 35 40 45 50

6 12 18 24 30 36 42 48 54 60

7 14 21 28 35 42 49 56 63 70

8 16 24 32 40 48 56 64 72 80

9 18 27 36 45 54 63 72 81 90

10 20 30 40 50 60 70 80 90 100

>defformat; // reset to default format

>reset; // does the same and more

To plot a function we can generate a table of values of the function �rst. It is the

only way if the vector is generated elementwise, e.g. by some random process. As

an example, we generate a Brownian motion by adding random numbers. That is,

we compute

s[i] := t[1] + : : :+ t[i]

for i = 1; : : : ; 1000, where the t[i] are normal distributed values. The function

cumsum does just what we need.

>t:=normal(1,1000); s:=cumsum(t); plot2d(s):
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Figure 1.10: Brownian motion

1.9 Sequences

A simple sequence can be generated with the : operator and the matrix language

of EMT. Functions like sum, cumsum or differences can be applied to sequences.

Note that the factorial function ! vectorizes too.

>n=1:10; n^2

[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

>sum(n^2)

385

>differences(n^2)

[3, 5, 7, 9, 11, 13, 15, 17, 19]

>cumsum(n)

[1, 3, 6, 10, 15, 21, 28, 36, 45, 55]

>n!

[1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3.6288e+006]
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In Maxima there is a function that can produce symbolic sequences. For an example

we create the polynomials

e�x
2 dn

dxn
ex

2

for n = 1; 2; 3; 4. The third parameter in diff is the order of the derivative.

>&create_list(expand(diff(exp(x^2),x,n)*exp(-x^2)),n,1,4)

2 3 4 2

[2 x, 4 x + 2, 8 x + 12 x, 16 x + 48 x + 12]

Figure 1.11: A trigonometric sum

Moreover, the function sum can be used in Maxima to generate a sum over a se-

quence.

>f &= sum(sin((2*n-1)*x)/(2*n-1),n,1,6)

sin(11 x) sin(9 x) sin(7 x) sin(5 x) sin(3 x)

--------- + -------- + -------- + -------- + -------- + sin(x)
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11 9 7 5 3

>plot2d(f,0,2pi):

The same plot can be generated in the matrix language of EMT. We take a row

vector x and a column vector n and combine those to compute sin(nx)=n. Then we

take the sum of the columns of the result. Since sum takes the sum of the rows, we

have to transpose twice.

>n=(1:2:11)’; x=linspace(0,2pi,500); y=sum((sin(n*x)/n)’)’;

>plot2d(x,y):

There are also simple functions for recursively de�ned sequences. One example is

sequence. The expression for this command can involve a vector x containing the

previous elements of the sequence, and the index n of the new element.

>shortformat;

>sequence("x[n-2]+x[n-1]",[1,1],10) // Compute the Fibonacci sequence

1 1 2 3 5 8 13 21 34 55

Of course we can also use a loop. Loops on the command line (outside of functions)

can be used, as long as they �t into one command line or a multi-line (see below).

The details of the syntax for loops are explained in the section about programming.

>v=ones(10); for i=3 to 10; v[i]=v[i-1]+v[i-2]; end; v,

[1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

Note that we have de�ned the vector beforehand. We could also append each new

element to the vector. This would be slightly less e�cient.

>v=[1,1]; for i=3 to 10; v=v|(v[-2]+v[-1]); end; v,

[1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

Note the negative indices v[-1] and v[-2]. They count from the end of the vector.

There is a simple function which iterates an expression or another function to con-

vergence. Of course, it works only if the iteration converges. It stops in a �xed

point.
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>iterate("cos(x)",1), cos(%)

0.739085133216

0.739085133215

If the process converges the result is a �xpoint of the function (i.e. f(x) = x). This

works for vector valued functions too. Let us try

f(x; y) =

�
x

2
� y

4
; 1 + x3 +

y

2

�
:

>function f([x,y]) := [x/2-y/4,1+x^3+y/2]

>v=iterate("f",[1,1]), f(v)

[-0.682328, 1.36466]

[-0.682328, 1.36466]

Example

For an example, we compute the length of the 3n + 1-sequence starting from any

value n0. The sequence is de�ned by

nk+1 =

8<
:nk=2; n even;

3nk + 1; n odd:

It has been conjectured that the sequence reaches nk = 1 for some k for all starting

points n0.

For the iteration we can use iterate with an end condition and a maximal number

of iterations. The argument till is a stopping condition for the iteration.

We could use an expression (with case) here.

>iterate("case(mod(x,2),3*x+1,x/2)",17,till="x==1",n=1000)

[17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1]

But we also want to demonstrate a multi-line function in the programming language

of EMT.

>function step (n) ...

$ if mod(n,2)==0 then return n/2;

$ else return 3*n+1;

$ endfunction

>iterate("step",17,till="x==1",n=1000)

[17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1]
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Figure 1.12: Stochastic Changes

Example

For another example, we use vector iteration to apply a stochastic matrix to some

start values over and over again, adding a stochastic variable in each step.

xn+1 = Axn +Xn:

We use the function sequence for this. The trick is to take the last column of x for

the next step. The matrix x contains the values computed so far in its columns.

>A=[0.7,0.2;0.3,0.8]

0.7 0.2

0.3 0.8

>x=sequence("A.x[,-1]+10*normal(2,1)",[1000;500],20);

>plot2d(x,>addpoints,color=[red,blue]):

Of course, we could also use a loop. We show how a multi-line function simulating

the process might look like.
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>function simulate (x,A,s,n) ...

$ loop 1 to n;

$ x=A.x+s*normal(size(x));

$ end;

$ return x;

$endfunction

Figure 1.13: Distribution of x[1]

Now we do this 1000 times and plot the distribution of the �rst value of the vectors.

>m=1000; v=zeros(m);

>for k=1 to m; v[k]=simulate([1000;500],A,10,20)[1]; end;

>plot2d(v,>distribution):

This is a nice Monte-Carlo simulation. The expected value depends on the eigen-

vector of the matrix to the eigenvalue 1, i.e., the solution of Ax = x, and also on

the total number of individuals in the starting x. In our case, we start with 1500

individuals.
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>v=kernel(A-id(2)); fraction v

2/3

1

>1500/sum(v’)*v

600

900

Monte-Carlo simulations are a nice and useful application of numerical software. We

show more of this type of applications in the chapter about statistics.



Chapter 2

Introduction

2.1 Overview

Euler Math Toolbox (EMT for short) is a numerical and algebraic software, a mix-

ture between a computer algebra system (CAS) and a numerical matrix language in

the style of Matlab. The numerical part has been programmed by R. Grothmann,

a mathematician at the University of Eichst�att. The algebraic part uses Maxima, a

mature software maintained by a group of enthusiasts.

The numerical kernel of EMT is based on a matrix language. This language can not

only handle simple numbers, but also vectors and matrices of numbers. Moreover,

it can compute expressions with complex numbers, intervals and strings. All these

computations can be programmed in functions, which might be loaded from external

�les into EMT. Indeed, a large part of the EMT syntax is based on functions written

in the EMT programming language.

EMT can also produce graphics, store these graphics in an internal meta format,

and output the graphics for various media, e.g., the graphics window. Graphics can

also be imported into the notebook window, exported to �les or to the clipboard.

The notebook window can be exported as an HTML page for the web.

The Maxima subsystem communicates with EMT through pipes. It remains a sep-

arated system. However, there are various interactions between EMT and Maxima,

and the computer algebra is seamlessly integrated by symbolic expressions. This is

a mighty environment to do mathematics.

Advanced features of EMT are an exact scalar product providing guaranteed solu-

tions together with the interval arithmetic, interfaces to Povray, Python, and TinyC,

45
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SVG export of graphics, HTML or PDF export, Latex formulas in notebooks and

graphics, and much more.

EMT started about 1988. The aim was to get an interactive mathematical system

on an Atari ST. The program was never a clone of Matlab, and went its own path

since the beginning. The current version works on Windows. Older versions for

OS/2 or Linux are no longer up to date. However, EMT will run in Linux or OSX

under Wine, including computer algebra support by Maxima. The native version

for Linux, based on the port by Eric Bouchar�e is very restricted and outdated, and

does not provide symbolic features.

2.2 First Steps

Figure 2.1: The text window of EMT
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From the user viewpoint, EMT looks like a command shell in a text window. Here,

commands can be entered and executed, and the output will appear in the same

window below the command. There is a second window, the graphics window, for

the graphical output of EMT. The current graphics in the graphics window can be

inserted into the text window. All commands in the text window can be edited and

executed at any time. It is also possible to add comments. We refer to the content

of the text window as an EMT notebook. Notebooks can be exported to HTML

pages.

The following windows of EMT can be opened at any time.

� The notebook window containing commands, output, comments and graphics.

� The graphics window containing the current graphics. The current graphics

can be inserted into the notebook text using : at the end of the command.

Graphics can alternatively be displayed in the notebook window (toggle with

Ctrl-G) and brought to view by the tabulator key TAB.

� The help window containing a search line, help text and a search history.

After installing EMT with Maxima, you will �nd a shortcut in the start menu and

on the desktop to start the program. Start Euler, and enter the following commands

for a �rst test.

>1+1

2

>exp(-0.5)*sin(3/2*pi)

-0.6065306597126

If you make a mistake, go to the error with the mouse or the cursor keys, and correct

the input. Press return anywhere in the line to start the computation. Try double

clicking on exp or sin to open the help window, or use F1.

For a next step, I suggest opening the tutorial notebooks. Use the help menu to

�nd the tutorials. They should be contained in the EMT installation. After reading

a few of these introduction notebooks, you should have a very good idea of EMT.

Since EMT uses commands, you should take the time to learn the proper syntax of

the program. This text tries to give you a good start on all aspects of EMT.

Further Information

Open Help Window (F1) Help on commands.

Open Tutorials Opens one of the tutorials.

Browse ... Open help in the browser.

About Euler Version information.
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2.3 The Interface

Figure 2.2: Graphics window of EMT

There is a HTML �le in the documentation with a full description of the Euler GUI.

Here, we give only a quick overview.

The interface of EMT is relatively simple with its notebook window and its graphics

window. The notebook window has the usual menu, the text area and a status line.

Both windows can be enlarged. EMT will remember the sizes and the positions of

the windows depending on the current screen resolution. You can also try F11 to

toggle maximizing the window layout on your screen.

The advantage of such a simple interface is that it is not complicated to learn.

The disadvantage is that it does not o�er graphical icons listing all the available

commands. Since it is impossible to squeeze all options of EMT and Maxima into

menus or icons, EMT currently has no further icons. However, there is a reference

and extensive help available in the help window and the browser.

The graphics window contains the current graphics. It can be resized. The default

aspect ratio is square. This can be changed in the settings globally, or with the
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aspect command for the next plot.

>aspect(16/9); plot2d("sin(x)/x",0,2pi,xl="x",yl="sin(x)/x"):

>aspect; // reset aspect ratio

>reset; // reset default values

Figure 2.3: 16:9 aspect ratio in EMT

Note that the layout of the graphic depends on the aspect ratio. The function

shrinkwindow will be called to �ne-tune the graphics so that the labels have enough

space.

The colon : after the plot command inserts the current graphics into the note-

book. These graphics will be exported and saved along with the notebooks in a

subdirectory images. The graphics window can also be dismissed (Ctrl-G). Then

the graphics can be viewed in the notebook window. Press the TAB key to see the

graphics in this mode or when the graphic is hidden. It is possible to show the

graphics in EMT programs with the wait command after a plot.

The content of the graphics window can be exported in various formats. Either use

the �le menu, or the functions savepng, savesvg, saveps.

Further Information

TAB key Switches between text and graphics.

Ctrl-G Toggles the graphics window.

: after a plot command Inserts the current graphics into the notebook.
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2.4 The Command Line

All commands are entered into the notebook window in the current command line.

The commands are in dark red and start with the prompt > (followed by optional

toggles for Maxima or Python). The user cannot delete the prompt >. Furthermore,

the text window may contain comments in green color, and function de�nitions in

blue color starting with $. Note that colors are not shown in this introduction. All

EMT commands and the output is printed in blue in this text.

Enter commands just like in any other program which uses a command shell. Use

the arrow keys or the mouse to move the cursor. The Ctrl key together with the

left and right key move the cursor word by word. Have a look into the edit menu

for more options. Press the Return key anywhere in a line to execute the command.

This will put the cursor into the next command line. To walk between command

lines use Cursor-Up or Cursor-Down. For other navigational keys see the Edit menu.

Note that command lines do not automatically execute if they are changed. You

need to press Return to execute the command. If you want to recompute a section

of commands, use Shift-Return. This will execute all commands in the current

section. A section is marked by a heading in the comment or by an empty command

line.

For an example have a look at the following two commands.

>x=2

2

>x=(x+2/x)/2

1.5

The second line puts a new value to the variable x. If you execute this line over

and over (with Cursor-Up and Return) you get new values in x. The values quickly

converge to
p
2. If you press Shift-Return, the state as printed above is restored.

Of course, you can run a command several times with a loop.

>x=2

2

>loop 1 to 5; x=(x+2/x)/2, end;

1.5

1.41666666667

1.41421568627

1.41421356237

1.41421356237
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Command lines can be deleted with Alt-Back. The deleted lines are accumulated

and can be inserted anywhere with Alt-U. Alternatively, you can use cut and paste

as described below. A new line can be inserted with Alt-Insert. The shortcuts for

this are listed in the edit menu.

To stop a long computation press the Esc key. This will also interrupt the print

of long vectors. (By default long vectors do not print completely, but this can be

forced with the operator showlarge.)

To add a comment to a command line, start the comment editor with F5. The

syntax of comments will be explained later. For now, just type paragraphs without

using the enter key, and separate paragraphs by empty lines.

Simple one line comments can be appended to the command line using //.

>sum(1:1000) // computes the sum from 1 to 1000

500500

If lines end with three dots ... EMT will execute the complete command at once

(muli-line commands). This will work, even if the cursor is in the second line of the

multi-line command.

>plot2d("x^y",a=0,b=3,c=0,d=3, ...

> levels=-100:0.2:100, ...

> title="x^y"):

To split a line into a multi-line, press Ctrl-Return. To join two multi-lines, go to the

start of the second line and press Ctrl-Backspace. Alternatively, open the internal

editor with F9 to edit all lines of the multi-line at once.

You can mark text in the text window by dragging the mouse over it. Marked text

can be copied to the clipboard. The copied text can then be inserted into the current

command line, if it is less than one line, or in front of the current command line, if

it contains several lines. This is also a quick way to send EMT commands by mail.

There are special menu entries to copy commands only, or to copy a formatted

version of the notebook. Copying commands only is designed to generate an EMT

�le from the marked commands. It will not contain any output. Formatted copying

is good for generating documentation �les for EMT. The output can still be pasted

back to EMT.

Further Information

, Separates the commands in one line.

; Separates the commands and suppresses output.
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2.5 Syntax

EMT distinguishes commands, expressions and assignments.

>list sin // command

*** Functions:

alsingular antialiasing arcsin asin asinh isinterval sin sinc sinh

*** Maxima:

sin sinh sinsert sinnpiflag sinvertcase

>a := sin(pi/2) // assignment

1

>sin(pi/4)^2+cos(pi/4)^2 // expression

1

list is a command to �nd all functions or commands containing the string.

The most elementary expressions are mathematical expressions. EMT will evaluate

these expressions with the usual order of evaluation.

>(1+2*4)*(3+4)/(4+2)

10.5

In case of doubts, use brackets. Exponents evaluate from right to left in EMT just

like in the majority of programs (with the exception of Matlab, but not Scilab).

>3^3^2, (3^3)^2, 3^(3^2)

19683

729

19683

Note that the division is done with /. Currently, there is no 2D editor in EMT for

expressions with fractions. You can print expressions in 2D with Maxima or Latex.

>& a^2/(a+1)

2

a

-----

a + 1

>$ a^2/(a+1)
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The last command will print the expression formatted by Latex if Latex is properly

installed.
a2

a+ 1

There are functions which work like commands. The result of these functions is of

no interest (or it is the internal value none which will never print anything). In this

case, you can prevent the output of the result with ;.

An assignment contains a variable name on the left side, and an expression on the

right side of :=. Here, the semicolon ; will often be used to suppress the output.

>a := 2;

>a := a^2;

>a

4

>a := a^2;

>a

16

EMT does also understand the syntax a=2 for assignments. However, in cases like

a=a^2 this looks confusing, so I selected the verbose form :=. for most examples in

this introduction.

There are also multiple assignments to assign multiple return values of functions to

several variables. Read more about this in the section about programming.

Further Information

>x^2 Sends the command to EMT.

>& x^2 Sends the command to Maxima.

>>> print 4^2 Sends the command to Python.

2^2^2 Evaluates to 2^(2^2).

Ctrl-Cursor up Calls an old command from the command history.

2.6 Notebooks

The content of the notebook window is called a notebook. Notebooks can be saved

for later reload, or exported to HTML for web pages or printing, and to PDF using

Latex. Notebooks can contain
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� commands, your input,

� output, the result of EMT or Maxima computations,

� comments, formatted with the comment editor,

� graphics, inserted via : or loaded from �le.

If a notebook containing images is saved, the images are saved in separate �les in

the PNG format. By default, images are saved into a sub-directory images.

To navigate through the commands in a notebook use the mouse or the cursor keys.

The comments and the output of a command as well as the graphics belong to

the command. If the command is deleted these items are deleted too. To edit the

comment of a command, use the comment editor with F5 (see below for the syntax).

The output cannot be edited. Command lines can be inserted and deleted only

together with their comments and their output.

Note that the order of execution may not be the order of the commands in the

notebook. Entering the commands in the following notebook yields the output

printed here. If you go back from the third to the second line and execute it once

more, a = 4 will be used, and the output changes to 16.

>a:=2;

>a*a

4

>a:=4;

To run all commands in a notebook use the corresponding menu entry or Ctrl-R.

All variables will be set in the correct order then. To run all commands in a section

press Shift-Return. A section starts end ends with a heading in the comment or

with an empty line. For a clean start, re-load the current notebook via the list of

recent notebooks. By default, EMT will restart automatically, when a new notebook

is loaded, i.e., all values of all variables are reset and lost and the graphics is reset

via the reset command.

Saved notebooks should have the extension *.en. These �les are ordinary text �les.

However, it is not recommended to edit notebooks with an external text editor.

The character encoding of the notebooks is the current encoding of the system the

notebook was saved with. Notebooks with comments in foreign languages may not

look well in wrong encodings. Currently, Euler does not save notebooks in Unicode

encoding.
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Images will be saved in separate �les in PNG (portable network graphics) format,

and are referred from the notebook �le by �le name.

By default, EMT performs a fresh restart when a notebook is loaded. This can be

disabled with a switch in the options menu. A restart a�ects Maxima too. The

Maxima process ends, and starts again.

It is possible to open a second process of EMT with Ctrl-Shift-o. The second

process will have the graphics window hidden and will not save any settings. This

helps to look up commands in other notebooks or to copy and paste parts of another

notebook. Of course, a new process of EMT can also be started with the program

icon, or by shift-clicking on the icon in the task bar if EMT has been added to the

task bar by the user.

Further Information

Open Notebook Open notebooks in the current directory.

Open User Notebook Open notebooks in the user directory.

Open Tutorials or Examples Open an included notebook.

2.7 Comments

Comments belong to a command line. To edit the comment for this command line,

press F5. A simple internal editor will open.

You do not need to break lines in the editor. This is done automatically when the

paragraph is inserted into the notebook. It looks good to separate paragraphs by

empty lines. The line length of the inserted comment is set to the default of 80.

But you can change the width of the output in EMT in the settings. If you like you

can change it to the width of the notebook window.

Some formatting and some special items are possible in comments. Here is an

example.

* Heading

This is a paragraph. There is no need to break lines within a

paragraph. EMT does this automatically when the comment is inserted

into the notebook.

Break paragraphs with empty lines. The following are formulas in
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Figure 2.4: Example for Comments

Latex. The second formula is formatted by Maxima.

latex: \sum_{k=0}^\infty x^k = \frac{1}{1-x}

maxima: ’integrate(x^2*exp(x),x) = integrate(x^2*exp(x),x) + C

The formulas are parsed by Latex. The second formula is parsed by Maxima before

the Latex code goes from Maxima to Latex. Instead of latex: you can also use

mathjax:. This will still be parsed by Latex, but the HTML export will produce a

link to MathJax.

For the HTML output, paragraphs can contain lists

** Other Items
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For HTML export a comment can contain lists.

- One

- Two

or paragraphs for unformatted output.

>2*3

6

Another items are links to local pages or pages in the net.

See: http://www.euler-math-toolbox.de | EMT homepage

See: test.html | Link to the HTML export of test.en

See �gure 2.4 for the notebook with these comments. For the example, I have put

both comments to subsequent empty command lines. If a command line consists of

nothing but an empty comment // it is empty and will display only if it has the

focus.

Comments can also load images from �les. For details, check the help text for

comments as explained in the following section.

2.8 The Help Window

EMT comes with a complete reference in English, a reference to the Euler interface,

quick tips, tutorials, demos, examples, and this documentation. Use the help menu

to access these items, or press F1 to open the help window. The help menu can also

be opened by double clicking a command in the notebook.

In the help window, you can search for help on a command by typing the command

into the input line. While you type, the commands starting with the string appear.

You can double click any item to open this command. In the help section of the

command you can double click on any other command. Use the breadcrumbs in the

�rst lines to return to a previous command.

For Maxima commands add an ampersand as in &integrate, or a blank before the

command name.

To search for any string in any help section, use ?string. This will �nd lots of

places where the string appears. Double click on the command you want to see.
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Figure 2.5: The help window

An empty search line displays a number of basic topics. Click on a topic to open

a text and examples about the topic. This is not the ideal tool to learn EMT, but

rather a reference. For starters, there are the tutorials.

Also observe the status line in the text window while typing a function. After the

open bracket of the function, you can �nd a list of parameters and an explanation

there. This works for EMT and Maxima commands. Pressing F1 at this point opens

the help window with the help command for the command.

From the help window, you can open the command in the browser. Usually, the

reference opens positioned at the links to the command. Select the link you wish to

see.
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Further Information

Escape key Clears the input line or closes the help window.

F1 key Switches between EMT and the help window.

2.9 Euler Files

If you want to develop longer and more complicated programs, it becomes useful to

put all function de�nitions and all commands into external Euler �les, also known

as Scripts. These �les should have the extension *.e, and can be loaded into EMT

with the load command.

Files in the current directory will be found by their name. The current directory

is the directory, where the current notebook is loaded from or saved to. Otherwise,

use the full path of the �le, or include the directory of the �le into the EMT search

path. See the help on path for more details.

The following loads an included script for a package. The script is found, because

it is in the internal EMT path.

>load interest

Computes interest rates for investments.

You can double click on the load command to open the help window with the help

for this script.

If you write your own scripts, save the notebook into one of your directories, e.g.,

Euler Files in the documents folder. Then enter a line containing the load com-

mand.

>load filename

Pressing F9 will then open the internal editor, and pressing F10 the external editor.

Either editor lets you edit the content of the �le named filename.e. Close the

internal editor to save the �le. For an external editor, it is not necessary to close

the editor, but you will have to save your �le, of course. Then press return to run

the load command and interpret the �le.

If the command line does not contain a load command the editors edit the temporary

script EulerTemp.e in the user directory (F9 or F10). However, other �les can be

loaded into the editor, or the editor �le can be saved to some other �le.
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The �le is saved by the internal editor in the current directory, usually the directory

where the notebook is saved. Because of this, you want to save the notebook before

you generate a script.

Scripts can contain all commands of EMT, especially de�nitions of functions. The

lines of functions in scripts can optionally start with $. Then you can paste the

function into a notebook if you want to have it there and edit it directly in the

notebook, optionally using the internal editor.

Here is an example of an Euler �le.

comment

This text is shown when the file loads.

endcomment

/*

Multi-line comment

Some variables:

*/

g:=9.81; // earth gravitational acceleration

t:=2.5; // time

s:=1/2*g*t^2; // height

// Output of s:

s,

Save this �le into a �le named test.e as shown above, and load it with the load

command as follows

>load test

This text is shown when the file loads.

30.65625

The section between comment and endcomment is printed when the script loads. For

other comments use //.

2.10 Internal and External Editors

The internal editor is just a simple text dialog. It starts with F9. Any external

editor starts with F10. It can only be used to edit scripts. The external editor can
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be any editor on your system. By default, it is the included Java Editor JE. JE

has syntax highlighting for EMT scripts. To be able to use this editor, Java has

to be installed, of course. But a good text editor like Notepad++ will do the job

too. EMT does not wait for the external editor to �nish. You can leave the editor

open, switch to Euler, and run the load command there. Do not forget to save any

changes in the external editor.

If the line starts with a function command, the internal editor will edit the func-

tion. After editing the function, a missing endfunction will be added. Moreover,

the function line will be closed with ... so that the function de�nition can be

interpreted with one stroke of the return key.

>function f(x) ...

$ // function body

$endfunction

>

On any other line the internal editor will edit the current line. Even multi-line

commands ending with ... can be edited this way.

As shown above, the internal or external editor can be used to edit scripts.

Figure 2.6: Con�guration of the external editor
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The external editor will �nd the �le in the current directory, i.e., the directory of

the current notebook. For other �les, use the full path in the load command, and

press F10.



Chapter 3

Expressions and Plots

3.1 Elementary Expressions

Of course, EMT knows all elementary mathematical operations, and evaluates ex-

pressions following the usual conventions. Nevertheless, sometimes you should use

brackets to avoid errors.

>-2^2

-4

>2^-2

0.25

>2^3^4 // evaluated as 2^(3^4)

2.41785163923e+024

>(2^3)^4

4096

Note that in contrast to Matlab (but not Scilab) the power operator evaluates from

left to right in EMT. This is the same order that all other math programs follow.

The list of available functions and operators is quite long. Note, that the natural

logarithm can be computed with log or ln, There is also the decimal logarithm

log10. The square root function is called sqrt. To get a list of these functions,

open the help in the browser and check the Reference page.

Expressions can produce an error message. E.g., the square root of negative numbers

does not exist, unless we convert the number to a complex number.

63
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>1/0

Floating point error!

Error in:

1/0 ...

^

>sqrt(-1)

Floating point error!

Error in sqrt

Error in:

sqrt(-1) ...

^

>sqrt(complex(-1))

0+1i

It is possible to switch the error messages o�. In that case, the result is NAN (not a

number). The plot2d command uses this feature, so that the user does not have to

care about the de�nition set of the plotted function.

>errors off; 1/0, errors on;

NAN

>plot2d("x^x",r=1); // x^x is not defined for negative x

Powers with integer exponents are well de�ned, even for negative numbers. Other

powers of negative numbers are not de�ned. Powers of complex numbers are always

de�ned.

>(-2)^3

-8

>0^0

1

>(-1)^(1/2)

^ defined for positive numbers or integer exponent!

Use complex numbers?

Error in ^

Error in:

(-1)^(1/2) ...

^

For very large or small numbers, use the exponential format.

2.4e20 = 2:4 � 1020
2.4e-20 = 2:4 � 10�20
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>1.2e10

12000000000

>1.2e-10

1.2e-010

EMT knows some other data types, but it handles integers and booleans as reals.

The result of a boolean expression is 0 for false and 1 for true. The constants true

and false are de�ned in EMT. Besides the obvious comparison operators, EMT

uses != or <> for not equal. Note that equality is checked with ==. There is a

special operator �=, which checks for equality with a relative error of epsilon.

The boolean \and" is &&, and the boolean \or" is ||. Moreover, in condition for if

statements, or and and can be used.

>1<=2, 2<=1

1

0

>1==2 || 2==2

1

>1+epsilon~=1

1

Further Information

2**3 Alternative for 2^3.

round Rounding etc.

3.2 Accuracy

EMT uses IEEE oating point numbers with about 16 decimal digits. To see this,

we evaluate the sine function in �, and increase the number of digits in the output.

In the default format, small numbers are rounded towards 0 (for the display only).

>longest sin(pi)

1.224646799147353e-016

The output can be tuned in many ways. The most important formats are the oating

point formats of various lengths, and the fractional format.
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>longformat; 1/3

0.333333333333

>longestformat; 1/3

0.3333333333333333

>shortformat; 1/3

0.333333

>fracformat; 1/3

1/3

>fracformat(10); 1/[1,2,3;4,5,6;7,8,9]

1 1/2 1/3

1/4 1/5 1/6

1/7 1/8 1/9

>defformat; // set the default

We demonstrated the fracformat for a matrix. That is very useful for matrix which

are known to contain fractional values. The parameter 10 is the number of total

places for the output.

For just one output there are operators.

>longest 1/3

0.3333333333333333

>shortest 1/3

0.333

>fraction 1/3

1/3

There are some special formats and even user de�ned formats (see userformat in

the help window). In the following example we use a very narrow, but equally

spaced format.

>format(5,0); 1:10, longformat;

1 2 3 4 5 6 7 8 9 10

Some formats print row vectors and scalar numbers in a dense way. This is controlled

with the command denseformat(n), where n is the number of spaces between the

elements. The format command with two parameters (total space and digits after

the comma) sets denseformat(0), which prevents the dense output.

>longformat; 1:10 // dense output (the default)

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>format(10,4); 1:6

1.0000 2.0000 3.0000 4.0000 5.0000 6.0000
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There is also a special format for scalars. As you see in the following example, a

vector prints shorter numbers than a scalar.

>(1:4)*pi

[3.14159, 6.28319, 9.42478, 12.5664]

>pi

3.14159265359

To disable the special scalar format use scalarformat(false). To set the dig-

its for the scalar format use setscalarformat(n). Have a look at functions like

goodformat or operators like longest to learn to write your own functions for for-

mats and operators. To the function de�nition, enter type longest in the help

window.

The internal representation of a number can be printed with printdual or printhex.

The following example shows that 0:1 is not exactly representable in a dual com-

puter.

>printdual(0.1)

1.1001100110011001100110011001100110011001100110011010*2^-4

>printhex(0.1)

1.999999999999A*16^-1

>longest (0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1)-1

-1.110223024625157e-016

If more accuracy than 16 digits is needed, EMT o�ers a long accumulator and exact

arithmetic. More on this later. Moreover, Maxima has an in�nite integer arithmetic,

and a long oating point arithmetic.

To round a number use round, and to get the integer or fractional part use floor.

>round(pi,2)

3.14

>floor(pi)

3

Comparisons of real numbers deliver a boolean result, represented in EMT by 1 or

0. The comparison ~= tests for equality up to an internal accuracy epsilon. ==

tests for exact equality.
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>1/3+2/3 == 1

1

>0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1 ~= 1

1

Further Information

degformat(flag) Print in degrees.

degprint(x) Print x in degrees.

&2^1000 \In�nite" arithmetic in Maxima.

epsilon Returns the internal epsilon.

a~=b a about equal to b.

3.3 Variables

Results can be stored in variables for later use. To assign a value to a variable, EMT

has := and =. We prefer :=, since an assignment like a=a^2 looks confusing.

>g:=9.81; t:=2.5; s:=1/2*g*t^2;

>s

30.65625

EMT, as well as Maxima, can refer to the previous result with %. This should only

be used within a single line.

>solve("cos(x)-x",1), cos(%)-%

0.739085133215

0

Variables are cleared, when EMT is restarted, or with the clear varname function

(or with remvalue varname). This will also clear symbolic variables (see below).

EMT variables do not have a type. They can take data of any type. However, the

type can be checked with typeof, or the functions isreal, iscomplex etc. To check

for a matrix, use size.
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>isreal(1:10)

1

>iscomplex(I)

1

>length(2)

1

>length(1:10)

10

>length(random(3,2))

3

To list all variables containing a string, use listvars string. This can be done

as a command or in the help window. Note that many variables are prede�ned and

should not be changed. By the way, list string will list all functions with names

containing the string.

The constants I, E and pi look like variables, but are functions without parameters.

There also variants of this constants like i% and e% for Maxima.

When multiplying constants with variables, the multiplication sign * can often be

omitted. In this case, multiplication binds stronger than division. This feature is

useful for units (see below). Note that this is contradicting the convention, that

there should be a space between the number and the unit.

>a:=4; 3a+4a^2

76

>3/4a, 3/4*a

0.1875

3

>36km/2h // 36 km in 2 h are 5 m/s

5

Maxima does not support this kind of abbreviation, and needs multiplication signs

in all cases.

3.4 Units

Variables in EMT do not have a unit. We assume that physical numbers are in

meter, kg and seconds etc. (the so called IS system). To convert to other units,

there is the -> syntax. If used like this units can be called by the normal name, else

a $ has to be appended.
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>90km/h // result is in m/s

25

>25->km/h // result is a number

90

>25->"km/h" // result is a string

90km/h

For another example, we compute the potential energy of a body with 100 kg in

10 m height in Joule. From that, we get the speed it hits the ground in km/h. The

gravity constant at sea level is contained in the constant g$.

>Epot:=g$*100kg*10m

9806.65

>sqrt(2*Epot/100kg)->" km/h"

50.41709710009 km/h

The explicit units kg and m are superuous. These constants are 1.

How many minutes takes the light from sun to earth on average?

>AU$/c$->min

8.316746396769

To print a number in a speci�ed format with units use print. Alternatively, append

the string to the number. For special formats, there is also printf, which uses the

format conventions of the computer language C (secured against abuse). printf in

EMT can handle only one number, and there should be only one format such as

%10.5f for oating points in the format string.

>print(1/3,10,2,"km/h")

0.3333333333km/h

>0.25|" J"

0.25 J

>printf("%10.2fkm/h",1/3)

0.33km/h

To get detailed help about units or list all units, visit the help window and the

topic units. The units are de�ned in an Euler �le. You can see this �le in the help

window using the search term units.e.
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3.5 2D Plots

Discussing a function is a common task in mathematics. For a start, we explain

simple plots here. More details can be found in the tutorial about 2D Plots. For a

�rst overview, the function plot2d can plot the following:

� Functions of one variable with adaptive or �xed spacing.

� A list of functions of one variable.

� Two vectors of x- and y-values with line or point style.

� A path with two functions of one variable for x- and y-values.

� A �lled area outlined by a closed path with two functions of one variable for

x- and y-values or two vectors of data.

� Matrices of x- and y-data with one plot for each corresponding row of the

matrix.

� A complex matrix with one path in the complex plane for each row of the

matrix.

� The level lines of a function of two variables.

� Bar plots in some styles.

The easiest way to plot a function in EMT is to use an expression, numerical or

symbolic, in the variable x. Other variables must be de�ned globally.

>a:=2; b:=3;

>plot2d("a+b*x+x^2",-3,3,title="Cubic p(x)",xl="x",yl="p(x)"):

This example produced the graphics in 3.1. The graphics window will only be

displayed for a short time. As soon as EMT produces text output, the notebook

window will become the top window. To switch to the graphics window or back,

press the TAB key. This is also possible if the plot window is hidden and inserted

into the notebook window.

Note the : after the plot command. This inserts the current graphics in the note-

book window. An alternative is the command insimg(lines), which accepts the

number of text lines the plot should cover.
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Figure 3.1: Simple plot of a function

We already added a title and x- and y-labels to the plot. By default, the y-label is

vertical. These items are assigned arguments for the function plot2d in the form

name=value. Many variables of this kind are possible to con�gure the plot. As

usual, a good starting point is the tutorial about 2D plots.

Plots with expressions or functions can also be interactive, using the parameter

>user (an abbreviation of user=true). Then the user can press the cursor keys to

move the plot window, or the + or - key to zoom in or out. The mouse can be

used to mark a new region for the plot. The space bar resets to the default view.

Pressing return ends the plot.

>plot2d("a+b*x+x^2",a=-3,b=3,>user);

Another method to show the plot for a longer time is to use wait. This commands

waits for a speci�c time, or until the user presses any key.

>plot2d("a+b*x+x^2",-3,3); wait(60);
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Of course, it is also possible to specify the plot range exactly. For this, set the

parameter a,b,c,d, or the parameter r (for the radius around the a point, by

default the origin). plot2d has many more parameters. In the following examples,

we change the color and thickness of lines. Moreover, we add one plot to another

using the boolean argument >add. Note that we have entered a multi-line command

here, so that the two plot commands evaluate together.

In the example, we plot a function f(x) and the tangent to f in x = 1 in one plot.

>function f(x) &= x^2*exp(-x); ...

>function df(x) &= diff(expr,x); ...

>function T(x) &= f(1)+df(1)*(x-1); ...

>plot2d("f(x)",a=-1,b=2,c=0,d=1,thickness=2,grid=3); ...

>plot2d("T(x)",>add,thickness=2,color=blue,style="--"); ...

>labelbox(["function","Tangent"],colors=[black,blue],styles=["-","--"]):

Figure 3.2: Parabola and Tangent

We use a di�erent grid style for this plot using grid=3. The labelbox adds a

description, by default in the upper right corner of the plot.
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Besides functions and curves, the plot2d function can plot point clouds, distribution

of data in bar plot form, and a lot more. Some of these plots are discussed in later

chapters of this introduction. For a complete overview have a look at the tutorials.

Here, we have to restrict ourselves to a few examples.

To plot the binomial distribution for n = 20 and p = 0:4, we �rst use the matrix

language of EMT to compute the values. Then we call plot2d with two vectors,

one vector of x-coordinates, and another vector of y-coordinates. We add the points

to the plot with the parameters >points and >add. Alternatively, one plot with

>addpoints would do the same.

>n=20; k=0:20; p=0.4; y=bin(n,k)*p^k*(1-p)^(n-k); ...

>plot2d(k,y,title="Binomial Distribution with p=0.4"); ...

>plot2d(k,y,>points,>add):

Figure 3.3: Line and point plot of coordinate vectors

Since we can now plot vectors of x- and y-coordinates we can also plot spirals. The

following is the logarithmic spiral.
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>phi=linspace(-12pi,4pi,10000); r=exp(phi/10);

>plot2d(r*cos(phi),r*sin(phi),r=3.2,grid=0,thickness=2):

Note that r*cos(phi) returns a vector of values, combining the values in r and phi.

Figure 3.4: Bigger font for small graphics

For the small graphics on this page, we need to increase the thickness of the lines.

This can be done globally too. Moreover, for many plots the fonts are too small.

We can set the font in EMT for such small plots.

>setfont(10pt,8cm); window(100,0,1000,900);

>plot2d("x^3-x",xl="x",yl="y=x^3-x"):

>reset;
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The example does also demonstrate the window command. It can be used to set the

portion of the screen that a graphics covers. You need to make sure that there is

enough room for the labels and the title. The screen coordinates range from 0 to

1024 in each direction. In the example, we took away the room for the title. The

command reset resets to the default.

In the following example, we take a di�erent aspect ratio. We plot the sine and

the cosine and �ll an area between the curves. This is a bit tricky. We need to

de�ne a curve which goes around that area. The x-coordinates of the curve will be

formed by a vector t and the inverted vector t, since we need to go left and the

right. Likewise, the y-coordinates will be sin(t) and the inverted vector cos(t).

>aspect(16/9);

>plot2d("sin(x)",0,2pi); plot2d("cos(x)",>add);

>t=linspace(pi/4,5pi/4,1000);

>plot2d(t|fliplr(t),sin(t)|fliplr(cos(t)),>filled,>add,style="/"):

3.6 Numerical Analysis

To solve expressions like

xx = 2

needs numerical methods. There is no symbolic solution, and Maxima just returns

the equation.

>&solve(x^x=2)

x

[x = 2]



3.6. NUMERICAL ANALYSIS 77

There are many functions in EMT to solve such equations. All of them accept

expressions (besides names of functions). The following example solves xx = 2

using the stable bisection method and the faster secant method which is used by

solve. The target value is 0 by default, but it can also be speci�ed as y.

>bisect("x^x",1,2,y=2)

1.55961046946

>solve("cos(x)-x",1)

0.739085133215

The secant method secant can also be started with two start values. But it does

not guarantee to stay in the interval between these values. To help out there is

secantin which never goes outside the interval and is still reasonably fast.

>secantin("sqrt(x)*exp(-x)",0,0.4,y=0.3)

0.112769901579

The even faster Newton method needs a derivative. We can use Maxima to com-

pute this derivative for us. The function mxmnewton calls Maxima automatically to

compute the derivative.

>newton("x^2-2","2x",1)

1.41421356237

>expr&=x^2-2; newton(expr,&diff(expr,x),1)

1.41421356237

>mxmnewton("x^2-2",1)

1.41421356237

Not all integrals can be solved by symbolic means. So EMT has functions for

numerical integration and di�erentiation. To integrate, either use the robust and

fast Gau� integration, or the exact Romberg method. Of course, the very stable

Simpson method is also available. The Gau� method is exact up to polynomials of

degree 19, and uses only 10 evaluations of the function. Moreover, the interval can

be subdivided into a number of subintervals to increase the accuracy.

>fraction gauss("x^19",0,1)

1/20

>gauss("exp(-x^2/2)/sqrt(2pi)",-20,20,20) // 20 subintervals

1

>gauss("x^x",1,2)
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2.05044623453

>romberg("x^x",1,2)

2.05044623453

>simpson("x^x",1,2)

2.05044623596

The basic function integrate uses an adaptive integration, and �nds many integrals

with maximal accuracy.

>longest integrate("1/sqrt(pi)*exp(-x^2)",-10,10)

1

Often Maxima can compute an exact form of the integral.

>romberg("x*exp(x)",-1,1)

0.735758882343

>&:integrate(x*exp(x),x,-1,1)

0.735758882343

In principle, numerical di�erentiation has a limited accuracy, especially with higher

derivatives. Maxima can be used for exact di�erentiation.

>diff("x^20/20",1)

0.999999999999

>diff("x^20/20",1,2)

18.9999926252

>&diffat(x^20/20,x=1,2)

19

To �nd the points of extrema of a function use fmin or fmax. There is also a function

fextrema, delivering two values, a list of minima, and a list of maxima.

>fmin("x^3-x",0,1)

0.57735026525

>fmax("x^3-x",-1,0)

-0.577350272719

>{xmin,xmax}:=fextrema("x^3-x",-1,1); xmin, xmax,

0.577350265249

-0.577350272196
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3.7 Definition of Functions

Since there will be a later chapter on programming in EMT, you will �nd here the

basics only. To program very simple functions, there are one-line functions in EMT.

>function f(x) := 1/(x^2+1)

>f(2)

0.2

>plot2d("f",-3,3,r=5);

Most EMT functions, which accept expressions like plot2d also accept functions.

You simply pass the function by name contained in a string.

>x0:=solve("f",1,y=0.4), f(x0)

1.224744871392

0.4

Of course, a function can have more than one parameter. The parameters can have

default values. These default values can be changed with assigned arguments.

Moreover, global variables are visible from within one-line functions.

>function f(x) := a*x^2+x+1

>a:=4; f(1) // use the global a

6

>function g(x,a=4) := a*x^2+x+1

>g(2)

19

>g(1,5) // overwrite a

7

>g(1,a=6)

8

A problem arises, if plot2d is used to plot a function with more than one parame-

ter. plot2d can handle this by passing additional arguments to the function to be

plotted. Those arguments are appended to the call of plot2d after a semicolon ;.

We call them semicolon arguments.

>function f(x,a) := exp(-x^2)*sin(a*x)

>plot2d("f",0,10;9); // with a=9
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There is the rule that assigned arguments for plot2d (like the plot range) must be

given after the semicolon parameters. So the order is: normal arguments, semicolon

arguments, assigned arguments.

Another option is to use a collection to pass the function name and the additional

parameters to the algorithm which calls the function. Collections are a data type in

EMT collecting other elementary data of any type and have the syntax {{a,b,c}}.
In this introduction, we will not explain collections in detail. But for plots, the

following example will show how they can be used to pass the extra parameters.

>function f(x,a) := exp(-x^2)*sin(a*x)

>plot2d({{"f",9}},0,10): // also with a=9

This use of collections works for expressions too. For an example, let us compute

the zero of x2 � a for the variable a using the bisection method. But in this case,

the additional parameters for the expression (besides x, y etc.) must be named.

>bisect({{"x^2-a",a=3}},1,2)

1.73205080757

More complex EMT functions can be de�ned using the full syntax for EMT programs

and the function and endfunction commands. This is necessary for functions using

control statements. Those function start with function, and end with endfunction.

In the simplest form, enter the function line by line, and press the Esc key to end

the de�nition.

>function f(x)

$ if x>0 then return x

$ else return x^2

$ endif

$endfunction

>f(-2), f(2),

4

2

The notebook will be in a special function input state when a function is entered.

This is natural, since lines in a function must be entered one by one. You can no

longer go up or down with the cursor keys. To exit this state, enter endfunction

or press the escape key in an empty line.
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However, it is easier to use the internal editor to edit such a function in the notebook.

Press F9 in the function line to start this editor. endfunction will be added, if it

is missing. Moreover, the function line will end with ... so that the function can

be interpreted with one stroke of the return key.

Note, that the if command in the example above must end with endif. return

ends the function and returns the value. If it is missing, a special string none is

returned, which does not print. The function is then called a procedure. For other

control structures, see the chapter about programming.

There is another mode to enter a function. For this press Ctrl-Return after

function line. You can then enter the function by inserting new lines, insert-

ing lines between lines (Ctrl-Return) or deleting lines (Alt-Back). You can also

walk up or down in the function with the cursor. To end this mode, press Return

in the last line.

Such a function might look as follows. The ... in the �rst line evaluates the

function if Return is pressed in this line. Press Ctrl-Return to edit the function,

or simply click into the function body. Exit editing the function with Return. .

>function f(x) ...

$ if x>0 then return x^2;

$ else return x^3

$ endif;

$endfunction

Tabulator characters will be converted to spaces in function de�nitions. Pressing

the tabulator key will just insert two spaces in the edit mode. Note that exports of

functions contain $ characters in front of each line. Thus they can be pasted back

into EMT notebooks.

The mode to edit functions can be entered at any time for an existing function by

clicking into the function. This mode may be more convenient than the internal

editor, which you can start with F9 in the function line.

For an example, let us compute the distance of the horizon depending on the height

of the viewer, and plot a graph for this. The formula can be derived from the

theorem of Pythagoras applied to the triangle formed by the viewer, the horizon

point, and the center of the earth.

>function horizon(h) := sqrt(2*rEarth$*h+h^2)

>horizon(30)/km$

19.5296190439

>plot2d("horizon(x)/km$",0,1000,title="Distance of Horizon");

>xlabel("Height (m)"); ylabel("Distance (km)");
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Figure 3.5: Visibility in km vs. height in m

We can now solve the inverse problem. At what height is the distance of the horizon

80km?

>secant("horizon(x)",0,100,y=80km$)

503.381806208

To make a function of any expression in x, there is a special trick. If the expression is

stored in the string variable str, the syntax @str will be replaced with the content

of the expression.

>expr := "x^3-x";

>function f(x) := @expr

>type f

function f (x)

useglobal; return x^3-x

endfunction

>f(2)

6
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We have used type to make the function de�nition visible. It does indeed contain

the correct expression. You can also see that it contains the command useglobal.

This command allows a function access to any global variable.

If the function uses a symbolic expression it is possible to de�ne it as a symbolic

function. The following lines of code are similar to the previous example, but

Maxima is involved to de�ne the expression and the function. The function exists

in Maxima and in the numerical part of EMT.

>expr &= x^3-x;

>function f(x) &= expr

3

x - x

>&diff(f(x),x)

2

3 x - 1

>&f(a+1)

3

(a + 1) - a - 1

>f(1:5)

[0, 6, 24, 60, 120]

The last command shows that a symbolic function can also be evaluated numerically.

A symbolic function de�ned with &= does also work like a numerical function.

Note that it may happen that a function can only be evaluated numerically. E.g.,

the function may contain a numerical integration. In this case, there is no point in

using a symbolic function simply de�ne the one-line function with :=.

On the other hand, some functions can only be evaluated symbolically. E.g., the

function computes a symbolic derivative or a special function of Maxima which is

not implemented in EMT. These functions must be de�ned with &&=. In the section

about programs in EMT we will give more details on this.

It is also possible to de�ne elaborate functions in Maxima. More on this later.
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Chapter 4

Maxima

4.1 Introduction

Maxima is an algebraic, symbolic system, which can be called from EMT. You

can �nd a lot of examples and tutorials for Maxima in the Net. E.g., there is \The

Maxima Book" on SourceForge. Just for another example, the PDF �les by Gilberto

E. Urroz are very nice too. For German speakers, there is the comprehensive book

by Wilhelm Haager.

The books and tutorials use the original syntax of Maxima, of course. EMT uses

a somewhat di�erent syntax which is much closer to the syntax of EMT. You can

use the original syntax in the direct mode in EMT. However, it is not di�cult to

translate the code to the compatibility mode or to symbolic expressions.

After the �rst call, EMT will start an instance of Maxima in the background, and

communicate with it through pipes. By default, Maxima starts, whenever a new

notebook is loaded, or EMT is restarted. There is a global switch to start Maxima

later, when it is �rst used. Alternatively, start Maxima with the command mxmstart

and stop it with mxmstop.

There are several ways to use Maxima from EMT.

� Directly in the compatibility mode. The output of Maxima is printed directly

to the notebook in formula output. The syntax is adapted to the EMT syntax.

To use this mode, start the command line with >:: followed by a blank.

� Directly in the direct mode. The output is also printed to the notebook

window, but the syntax is the original syntax of Maxima. Start the command

line with >::: (or with >: if the switch to allow direct mode is on).

85
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� In Maxima mode. This starts and ends with the command maximamode. In

this mode, all commands are sent directly to Maxima, and EMT commands

need to start with euler. It is available using direct or compatibility mode.

� In symbolic expressions of the form &expression. The expressions are evalu-

ated in Maxima and the return string can then be used in EMT as an expres-

sion.

� In symbolic functions. These functions are one-line functions de�ned with &=

and evaluate the function body at compile time. The functions are visible in

EMT and in Maxima.

� Maxima can also be used at compile time in functions. The syntax for this

is &:expression. The expression is evaluated in Maxima and the result is

inserted into the function as if the user had entered the expression directly.

� Via mxm-Functions. There are a lot of EMT functions, which use Maxima at

run time. An example is the Newton method mxmnewton.

We now explain these modes in detail.

4.2 Direct Input of Maxima Commands

The preferred method for direct input of Maxima commands is the compatibility

mode with the prompt >::. In this mode, EMT will do a lot of formatting to the

command before it is sent to Maxima. Instead of the Maxima command separations

; and $, you can use the EMT separators , and ;. The Maxima assignment to

variables is replaced by :=. Maxima functions can be written with function ...,

and ags are appended with |. We demonstrate these changes below.

The direct mode with the >::: prompt (or : if the ag to allow this is on) still does

a little bit of editing. You can add comments with // just like in EMT commands.

Moreover, you need not �nish the command with $ or ;, since EMT will add ; if

it is missing to suppress the output. We will use the compatibility mode in this

document. For the direct mode, see the Maxima documentation.

The Maxima output is printed to the EMT notebook just like EMT output. How-

ever, by default Maxima uses a 2D non-linear output to format formulas. The

numbering of output by Maxima is removed by default, since this makes no sense

in a notebook environment. Use variables to hold values instead. Only within the

same line, use % to refer to the previous result.
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>:: (a+b)^2/(a-b)

2

(b + a)

--------

a - b

>:: res := expand((a+b)^5) // expand a product

5 4 2 3 3 2 4 5

b + 5 a b + 10 a b + 10 a b + 5 a b + a

>:: factor(diff(res,a)) // factor a product

4

5 (b + a)

As you see, Maxima uses symbolic variables.

Symbolic variables must not have a value. This behavior is in contrast to EMT

variables, which cannot be used, unless they have a value.

By the way, the value of a variable can be removed with the Maxima command

remvalue variable.

If you want to use EMT as a Maxima interface primarily, you can switch to Maxima

mode. In this mode, Maxima commands are entered just like EMT commands after

the prompt >. The command maximamode will toggle the compatibility mode by

default. For more control use maximamode on or maximamode direct. There is also

a menu option to start EMT in one of the Maxima modes whenever it starts. In

Maxima mode, euler ... will send a command to the EMT sub-system.

>maximamode on

Maxima mode is on (compatibility mode)

>1/3

1

-

3

>euler 1/3
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0.3333333333333

>maximamode off

Maxima mode is off

Maxima uses an \in�nite" arithmetic for integers and fractions. It will keep all digits

of a computation. Floating point numbers are only used on speci�c request.

>:: 1+1/3+1/7

31

--

21

>:: 100!/(50!*50!)

100891344545564193334812497256

The last example works in EMT too, but larger factorials cause an overow in EMT.

>100!/(50!*50!)

1.008913445456e+029

For the binomial function, EMT can use the function bin, which uses a di�erent

algorithm, and works for large numbers. Moreover it is very much faster than any

method in Maxima. The function float converts a Maxima expression to the same

type of oating numbers as in EMT.

>:: float(1000!/(500!*500!)) // convert to IEEE floating point

2.7028824094543655E+299

>bin(1000,500) // Euler function for binomials

2.702882409454e+299

There is also a oating point arithmetic with an adjustable number of digits in

Maxima. To use it, we have to assign the number of digits to the variable fpprec

(oating point precision).

>:: fpprec:=40; bfloat(sqrt(2))

1.41421356237309504880168872420969807857b0
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In compatibility mode (prompt >::), variables in Maxima are assigned with a :=.

To separate commands in the compatibility mode, use a comma as in EMT, and to

separate without printing, use a semicolon ;.

>:: expr := expand((1+x)^5);

>:: factor(expr)

5

(x + 1)

>:: expr := expr*expr, factor(expr)

5 4 3 2 2

(x + 5 x + 10 x + 10 x + 5 x + 1)

10

(x + 1)

If a Maxima expression is too long for one line, it can be spread over many lines.

Use ... just for these multi-lines.

>:: expand((1+x+x^2+x^3) * ...

>:: (1-x))

4

1 - x

The names of some Maxima functions can be appended to an expression, and work

like ags for the evaluation function. E.g., expand can be used this way. Also,

various simpli�cation hints can be given, like ratsimp, which simpli�es rational

expressions. For most of these ags, there is also a function version, which might

be preferred.

>:: (x+4)^2/((x+4)*(x+3)) | expand, % | ratsimp

2

x 8 x 16

------------- + ------------- + -------------

2 2 2

x + 7 x + 12 x + 7 x + 12 x + 7 x + 12
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x + 4

-----

x + 3

>:: log(16)/log(2) | radcan

4

Trigonometric simpli�cation with trigsimp does not work as a ag, and needs to

be used as a function.

>:: sin(x)^2+cos(x)^2, trigsimp(%)

2 2

sin (x) + cos (x)

1

>:: trigreduce(sin(x)^3)

3 sin(x) - sin(3 x)

-------------------

4

4.3 Symbolic Expressions

We already showed many examples of symbolic expressions. Those are the preferred

way to use Maxima in EMT, allowing a seamless integration of symbolic mathematics

in the numerical part of EMT.

Symbolic expressions are strings in EMT, which are evaluated in Maxima.

The result is a string, which can in turn be used in EMT, where Euler accepts a

string. e.g., for an expression. The syntax is &expr. EMT scans the brackets in

the expression, and stops at commas or blanks. Alternatively, use &"expr" to make

sure your expression is scanned correctly or to help EMT.



4.3. SYMBOLIC EXPRESSIONS 91

>&diff(x^4-2*x^3+x^2-x+5,x)

3 2

4 x - 6 x + 2 x - 1

>plot2d(&diff(x^4-2*x^3+x^2-x+5,x),r=2);

>solve(&diff(x^4-2*x^3+x^2-x+5,x),1)

1.2606898534

Symbolic expressions are strings with a special ag to mark them as symbolic. As

you see, the symbolic expression de�ned above is printed by Maxima in 2D as a

formula. The reason for this is the symbolic ag in the string which is returned by

Maxima after evaluating the expression.

To make sure this is understood, let us summarize how symbolic expressions work.

� When the EMT interpreter �nds a symbolic expression &... it passes a for-

matted version to Maxima for evaluation.

� The Maxima output is then scanned by EMT to �nd the result of the evalua-

tion. This result is stored in a string in EMT with the symbolic ag.

� The string can be used like any other string. E.g., it can work as an expression,

stored into variables, or print as output. The print would be done by Maxima

due to the symbolic ag.

The &= syntax de�nes a variable in EMT which contains a symbolic string. It does

also de�ne a variable with the same name in Maxima.

>expr &= diff(x^x,x)

x

x (log(x) + 1)

>&solve(expr=0)[1] // use expr in Maxima

- 1

x = E

>solve(expr,1) // use expr in EMT

0.367879441171

>1/E

0.367879441171
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If you just want to store a symbolic expression in EMT, you can use := and a

symbolic expression on the right hand side. In the example, we demonstrate how

to generate a more complex expression wth Maxima features.

>f := &sum(k*cos(k*x),k,1,5)

5 cos(5 x) + 4 cos(4 x) + 3 cos(3 x) + 2 cos(2 x) + cos(x)

>plot2d(f,0,2pi):

Figure 4.1: Fourier Series generated by Maxima

Maxima ags can be used in symbolic expressions too.

>&sum(k^2,k,1,n)|simpsum|factor

n (n + 1) (2 n + 1)

-------------------

6

If you want to use + for string concatenation de�ne the symbolic strings with quotes.

Note that the symbolic ag is lost after the concatenation.
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>&"diff(x^x,x)"+"+a"

x^x*(log(x)+1)+a

You can use use an EMT expression in Maxima or a symbolic expression without

de�ning it as a variable in Maxima. The necessary string manipulations are done

automatically with the syntax @str. This syntax pastes the content of the string

variable str into the symbolic expression.

>expr:="x^3";

>&diff(@expr,x)

2

3 x

>function f(x) := @expr

>f(4)

64

As you see above, the syntax does also work in numerical EMT functions.

To evaluate expressions in EMT, we already mentioned the syntax expr(...). It

evaluates the expression with the values assigned to the variable x, and y, z in case

of further values. There are also assigned variables, e.g. expr(3,a=5). This can all

be used for symbolic expressions, of course.

>expr &= sum(x^k/(n*k),k,1,10)

10 9 8 7 6 5 4 3 2

x x x x x x x x x x

---- + --- + --- + --- + --- + --- + --- + --- + --- + -

10 n 9 n 8 n 7 n 6 n 5 n 4 n 3 n 2 n n

>n=2; expr(0.4)

0.255409795007

>expr(0.4,n=2)

0.255409795007

To evaluate an expression in Maxima, there are several methods. The keyword

with that EMT adds to the symbolic syntax works like at in Maxima. It can be

used for one or more variables. The simple | does also work. And there is a more

complicated substitution.
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>expr &= a*x^2;

>&expr with x=4

16 a

>&expr with [x=4,a=2]

32

>&expr|x=4|a=2

32

>&subst(x+1,x,expr)

2

a (x + 1)

Often we want to de�ne a value in EMT and Maxima at the same time. Using &=

would enter the value as a string (i.e. a symbolic expression) in EMT. We can use

&:= for this. This is useful for non-symbolic matrices.

>M &:= [1,2;3,4]

1 2

3 4

>&eigenvalues(M), &"%[1]"()

5 - sqrt(33) sqrt(33) + 5

[[------------, ------------], [1, 1]]

2 2

[-0.372281, 5.37228]

>eigenvalues(M)

[ -0.372281+0i , 5.37228+0i ]

Note that the result of the function &eigenvalues is a vector of vectors. In this

example, we evaluated the �rst element of this vector (&"%[1]" in EMT (which

contains the eigenvalues) with the usual method to evaluate an expression (expr()).

This only looks complicated at �rst sight.
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4.4 Differentiation and Integration

Calculus is a typical application for symbolic computations. Maxima can compute

the derivative of all its functions, and knows also many integrals.

>&diff(x^5,x)

4

5 x

>&diff(x^5,x,2) // second derivative

3

20 x

>&integrate(x^5,x)

6

x

--

6

>&integrate(2/(x+1),x,1,2)

2 (log(3) - log(2))

Of course, we can also compute the anti-derivative �rst, and then insert the limits.

Use with to evaluate an expression at some values.

>s &= integrate(t/(1+t^2),t)

2

log(t + 1)

-----------

2

>&(s with t=2)-(s with t=1), %()

log(5) log(2)

------ - ------

2 2

0.458145365937



96 CHAPTER 4. MAXIMA

In connection with some integrals, Maxima may ask questions to the user. By

default, these questions are automatically answered.

>&integrate(x^n,x)

Answering "Is n equal to -1?" with "no"

n + 1

x

------

n + 1

To avoid this without the default automatic answering, it is possible to set assump-

tions for the variables.

>&assume(n>0); &integrate(x^n,x)

n + 1

x

------

n + 1

>&forget(n>0);

Maxima uses functions either as verbs or nouns. The di�erence is, that verbs eval-

uate, and nouns do not. To enter di�erential equations, we must use the di�erenti-

ation diff as a noun. To do this, we have to enter ’diff.

>eq &= ’diff(y,x) = y + x^2

dy 2

-- = y + x

dx

>&ode2(eq,y,x)

2 - x x

y = ((- x - 2 x - 2) E + %c) E

Further Information

diffat(sin(x)*exp(x),x=3) Di�erentiate and evaluate at x = 3.
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4.5 Symbolic Functions

In Maxima, we can de�ne one line functions just like in EMT. To do this seamlessly

there are symbolic functions. These functions can be de�ned only for Maxima

(purely symbolic with &&=) or for the numerical part of EMT too (with &=).

>function f(x) &= integrate(x/(x^3+1),x)

2 x - 1

2 atan(-------)

log(x - x + 1) sqrt(3) log(x + 1)

--------------- + ------------- - ----------

6 sqrt(3) 3

>f(4) // used numerically

0.657867619545

>&factor(f(4)) // used symbolically

7

6 atan(-------) + sqrt(3) log(13) - 2 sqrt(3) log(5)

sqrt(3)

----------------------------------------------------

3/2

2 3

As you see, the body of the function is evaluated before the function is compiled.

These functions can be used numerically or symbolically.

Purely symbolic functions do not evaluate the body prior to the de�nition. Of

course, they cannot be evaluated numerically. Here is an example, which computes

D(u) =
d2

dx2
u+

d2

dy2
u

for an expression u which depends on the variables x and y. We apply it to the real

part of an analytic function. Since this is a harmonic function the result must be 0.

>function D(u) &&= diff(u,x,2)+diff(u,y,2)

diff(u, y, 2) + diff(u, x, 2)

>&realpart((x+I*y)^4), &D(%)
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4 2 2 4

y - 6 x y + x

0

Of course, it is also possible to use the direct input to de�ne functions in Maxima.

These functions will be known to Maxima only, of course. You can use the compat-

ibility syntax := for such de�nitions. In this case, the body of the function is not

evaluated before the de�nition. To evaluate the body, use the Maxima command

define.

>:: function D(u) := diff(u,x)

D(u) := diff(u, x)

>:: D(x^4+5*x)

3

4 x + 5

>:: define(f(x),diff(x^3,x))

2

f(x) := 3 x

For the Maxima experts, the same is possible in the non-compatible direct mode

(>::: ...) using the book syntax of Maxima. We do not explain that here.

Example

The solve command of Maxima �nds exact solutions for expressions in one or more

variables. We use it to compute the area between two functions, as shown in the

plot.

>function f(x) &= (x^3-9*x^2+2)/3

3 2

x - 9 x + 2

-------------

3
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>function g(x) &= 5/3*x+2/3

5 x 2

--- + -

3 3

>plot2d([&f(x),&g(x)],0,10):

Figure 4.2: Two functions

For plot2d we used a vector of expression to plot two functions into one plot. We

clearly see that the functions intersect at about x = 9:5. We now compute this

intersection symbolically and perform the integration.

>sol &= solve(f(x)=g(x),x)

9 - sqrt(101) sqrt(101) + 9

[x = -------------, x = -------------, x = 0]

2 2

>&integrate(g(x)-f(x),x,0,x with sol[2]), &float(%)
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3/2

3 101 + 3047

---------------

24

253.8380130499846

The expression x with sol[2] is a simple way to extract the second solution.

For a comparison, we do the same with numerical integration. Of course, in general

this will be the way to go since most real world functions do not have a de�nite

integral.

>b=solve("g(x)-f(x)",10)

9.52493781056

>longest integrate("g(x)-f(x)",0,b)

253.8380130499845

Calling Maxima in numerical functions at runtime is not very fast. It is far better

to include the Maxima result in EMT functions. This is very easily done by calling

Maxima at compile time. In the de�nition of an EMT function, use &:"..." to

evaluate the string in Maxima, and paste the result into the EMT function.

>function f(x) ...

$ if x<0 then return &:"diff(x^2*exp(-x^2),x)"

$ else return &:"diff(x^2*exp(x^2),x)"

$ endif;

$endfunction

>type f

function f (x)

if x<0 then return 2*x*E^-x^2-2*x^3*E^-x^2

else return 2*x^3*E^x^2+2*x*E^x^2

endif;

endfunction

The internal de�nition of the function f can be printed with type (more on this

in the section about programming). As you see, the function contains the correct

expression for the derivatives.

If an expression in a string is needed there is the syntax "&:...".
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>function f(x) := integrate("&:diff(x^x,x)",1,2)

>type f

function f (x)

useglobal; return integrate("x^x*(log(x)+1)",1,2)

endfunction

4.6 Exchanging Values between Maxima and Euler

Sending direct commands to Maxima keeps the results of EMT and Maxima sepa-

rated from each other. Moreover, the output of Maxima is in a 2D format, which

cannot be cut and paste to EMT. Additionally, variables in Maxima and in EMT

are separated from each other.

But we can exchange results and values between EMT and Maxima easily even if

we do not use symbolic expressions.

A simple way to set variables for both worlds with one command is the &:= assign-

ment. This should be used for shorter matrices only since the value of the matrix

is printed and then evaluated by Maxima.

>v &:= 1:10;

>&v

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

To set variables in Maxima which are de�ned in EMT, we can use mxmset. This

should be used for big matrices. It will set a variable with the same name and value

in Maxima. The inverse is mxmget, which is almost identical to mxmeval.

>A:=[1,2;3,4];

>mxmset(A); // set the variable A in Maxima

>B:=mxmget("invert(A)") // inverse with Maxima transferred to EMT

-2 1

1.5 -0.5

>A.B

1 0

0 1
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Note that a variable in Maxima generated by mxmset is not known in EMT. More-

over, it is always a variable of type float. In the example 5/6 is parsed to a double

variable in EMT already. Note that mxmget evaluates the sum in Maxima and

transfers the result to EMT which will be a value in EMT, not a symbolic string.

>mxmset("x",5/6); mxmget("sum(x^k,k,1,10)")

4.19247208555

>&sum(x^k,k,1,10)

4.192472085550772

>x

Variable x not found!

Error in:

x ...

^

>sum((5/6)^(1:10))

4.19247208555

The functions mxm and mxmeval provide alternatives to symbolic expressions. To-

gether with the @expr syntax, this can be used to exchange and evaluate expressions

between Maxima and EMT. In most cases, it is easier to use the syntax of the sym-

bolic expressions.

>remvalue(x)

>mxm("diff(x^x,x)") // same as &diff(x^x,x)

x^x*(log(x)+1)

>expr:="x^x"; mxm("diff(@expr,x)")

x^x*(log(x)+1)

The @-syntax inserts the expression string at this position. It works in Maxima

commands, symbolic expressions, and in EMT functions. In functions, the expres-

sion is inserted at compile time. The function does not change automatically, if the

expression is changed.

Note the command remvalue(x). It is a very frequent error to assume that a variable

does not have a value and can be used as a symbolic variable. If the variable has a

value it will be used in the expression immediately.
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4.7 Matrices in Maxima

As one example of the previous section shows, Maxima can also handle matrices.

The simple EMT syntax with semicolons and commas can be used to de�ne matrices,

even symbolic matrices.

>A &= [1,2,3;4,5,6;7,8,x]

[ 1 2 3 ]

[ ]

[ 4 5 6 ]

[ ]

[ 7 8 x ]

>&solve(det(A)=0,x)

[x = 9]

Note that the matrix must not be de�ned with &:=, unless the variable x has a

numerical value. The variable A in EMT contains a symbolic string describing the

matrix. This symbolic expression can be evaluated numerically as usual.

>""+A

matrix([1,2,3],[4,5,6],[7,8,x])

>A(-4)

1 2 3

4 5 6

7 8 -4

But it could have been de�ned for Maxima only with &&:. Then the variable A

would be unde�ned in EMT.

We de�ned it with &:. So it is currently an expression in EMT. We can use this

expression to numerically solve the same problem. If we de�ne a function �rst, the

expression for the matrix can be inserted into the function with ...

>function f(x) := det(@A)

>longest solve("f",8)

9



104 CHAPTER 4. MAXIMA

Often Maxima uses vectors to collect results, such as solutions of equations. As

an example, we compute the rather complicated zeros of a cubic polynomial and

evaluate the result in EMT. Two of the zeros are complex values.

>sol &= solve(x^3+x^2+5*x+4=0,x);

>&sol[1]

sqrt(3) I 1

14 (--------- - -)

2 2

x = - ---------------------

sqrt(563) 65 1/3

9 (--------- - --)

3/2 54

2 3

sqrt(563) 65 1/3 sqrt(3) I 1 1

+ (--------- - --) (- --------- - -) - -

3/2 54 2 2 3

2 3

>&"x with sol[1]"()

-0.0880464-2.20163i

To see how the solutions in sol look, here is a more simple example. EMT can

evaluate the expression.

>sol &= solve(x^2-x=3)

1 - sqrt(13) sqrt(13) + 1

[x = ------------, x = ------------]

2 2

>sol()

[-1.30278, 2.30278]

Example

For a more complicate example, we �nd all Pythagorean triples a2 + b2 = c2. For

this, we choose two numbers 2 < q < p without a common divisor and solve the

equation

x2 + y2 = 1; y = 1� p

q
x:
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The simple idea is to set

x =
a

c
; y =

b

c

which yields a2 + b2 = c2. In the end, we have computed the intersections of a line

through (0; 1) with the unit circle. Since one intersection is rational the other must

be rational too.

>sol &= solve([x^2+y^2=1,y=1-x*p/q],[x,y])

2 2

2 p q q - p

[[x = -------, y = -------], [x = 0, y = 1]]

2 2 2 2

q + p q + p

Maxima returns a list with two pairs of solutions for x and y. We use with to set x

and y to these solutions.

>x0 &= x with sol[1], y0 &= y with sol[1],

2 p q

-------

2 2

q + p

2 2

q - p

-------

2 2

q + p

The solution is

a = 2pq; b = q2 � p2; c = q2 + p2:

This is a famous formula for the Pythagorean triples.

If we want to check

x2 + y2 = 1

we need to call ratsimp to simplify the solution (factor will work too in this

example).
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>&x0^2+y0^2, &%|ratsimp

2 2 2 2 2

(q - p ) 4 p q

---------- + ----------

2 2 2 2 2 2

(q + p ) (q + p )

1

In this introduction, we cannot mention all simpli�cations and transformations that

are possible with Maxima. You will need to refer to a tutorial about Maxima for

this.

4.8 Compatibility and Direct Mode

If you wish to study one of the various introductions to Maxima, you will have

to use the direct mode, and the original Maxima syntax. To enter a command in

this mode, start the command with >::: or use the direct Maxima mode with

maximamode direct. Note that the mxm command in EMT uses the direct syntax

too. This makes no di�erence, since it is used for simple expressions anyway.

The translation between direct and compatibility mode is rather straightforward.

We collect the di�erences of the compatibility mode and the direct mode in the

following list.

Further Information

>::... Command for Maxima in compatibility mode

>:... Command for Maxima in direct mode

, and ; Separation of commands in compatibility mode

; and $ Separation of commands in direct mode

| Append options in compatibility mode

, Append options in direct mode

:= Set variables compatibility mode, de�ne evaluating functions in compatibility mode

:= De�ne non-evaluating functions in direct mode

: Set variables in direct mode

function Keyword for non-evaluating functions in compatibility mode

define De�ne evaluating functions in both modes
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The main di�erences are the command and option separators. The following are

two lines of code with the same meaning.

>:: diff(x^2/(1+x^2),x); %|factor,

2 x

---------

2 2

(x + 1)

>::: diff(x^2/(1+x^2),x)$ %,factor;

2 x

---------

2 2

(x + 1)

Variables are set di�erently too. The direct mode uses : and the compatibility

mode uses := just as Euler does.

>::: a:3$ a^2

9

>:: a:=3; a^2

9

For the de�nition of a function, the direct mode uses either :=, which does not

evaluate the function body, or define, which does. Alternatively, the evaluation

can be forced with ’’(...)

>::: f(x) := integrate(x^2,x)

2

f(x) := integrate(x , x)

>::: f(x) := ’’(integrate(x^2,x))

3

x

f(x) := --

3
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As you see, the simple := can lead to very wrong answers. In the compatibility mode,

we use the Euler form function ... to set a function, which does not evaluate the

body, and f(x):=... to evaluate the function body. This is logical, since := works

in the same way for variables.

>:: integrate(x^2,x); f(x) := %

3

x

f(x) := --

3

>:: function f(x) := integrate(x^2,x)

2

f(x) := integrate(x , x)



Chapter 5

Numbers and Data

5.1 Complex Numbers

So far we have used oating point real numbers most of the time. EMT has two

other scalar numerical data types, which can be used in matrices: complex numbers

and intervals. In this section, we introduce complex numbers.

Complex numbers are entered by appending i to the imaginary part, or using the

constant I, which has the aliases %i and I$.

All computations in EMT are real, as long as there are no other data types involved.

Thus sqrt(-1) will not work. To turn a real number x into a complex number, use

complex(x). For the converse, use real(z). This will yield an error message if

the imaginary part of z is not close to zero. Of course, re(z) and im(z) simply

compute the real and imaginary part of a complex number.

>1+2i

1+2i

>(1+2*I)^2

-3+4i

>real(I*I)

-1

>sqrt(complex(-1))

0+1i

>re(2+3i), im(2+3i)

2

3

109
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Note that sqrt(complex(-1)) is not exactly I. But the usual format rounds the re-

sult to the expected value. To stop this, use longestformat, or zerorounding(false).

EMT can compute most numerical functions in the complex range. The results of

the logarithm and the power function use the main part, with the complex plane

cut along the negative axis.

>real(exp(I*Pi))

-1

>sqrt(-1+0.1i), sqrt(-1-0.1i)

0.0499378+1.00125i

0.0499378-1.00125i

>real(sin(I)^2+cos(I)^2)

1

>log(complex(-1))

0+3.14159i

It is also possible to plot complex numbers. See the section about the EMT matrix

language for an example.

Further Information

abs(z) Modulus

arg(z) Argument in ]� �; �]

conj(z) Complex conjugate z

plot2d Knows how to plot complex grids and curves.

5.2 Intervals

The third data type in EMT are intervals. Interval arithmetic is used to control

rounding errors. EMT can produce guaranteed inclusions of solutions for many

problems using its interval arithmetic.

Intervals are entered using the ~a,b~ notation as in the following examples. ~x~

creates a small interval around x.

>~1,2~

~1,2~

>interval(1,2)

~1,2~

>left(~-1,2~), right(~-1,2~), middle(~-1,2~)
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-1

2

0.5

>~pi~

~3.141592653589792,3.141592653589794~

Alternatively, the engineering notation � can be used. This special character is not

on the keyboard, and can be entered using the function key F8.

>1±0.1

~0.9,1.1~

The basic rule of interval arithmetic is that the result includes all values from any of

the parameter intervals. Thus x*x and x^2 can yield di�erent results. x*x multiplies

any value in x with any other value in x, while x^2 takes the square of any value in

x.

>~0.9,1.1~ + ~0.9,1.1~

~1.8,2.2~

>2 * ~0.9,1.1~

~1.8,2.2~

>~-1,1~ * ~-1,1~

~-1,1~

>~-1,1~ ^ 2

~0,1~

The same is true for functions. The function is evaluated in all elements of the

parameter interval, and the result is an interval containing all results. But due to

e�ciency, often this interval is not the smallest interval containing all results.

>sin(~1,2~)

~0.84,1~

>left(sin(~1,2~)), sin(1), sin(2)

0.841470984808

0.841470984808

0.909297426826

Note that the sine function has a maximum in the interval. The closest inclusion

would be [sin(1); 1].

A better approximation can often be obtained using a simple split of the interval

into subintervals using ieval. Sometimes, the function mxmieval delivers better

results. However, it uses Maxima to compute the derivative of the function. In

mxmieval it is possible to subdivide the interval for even better results.
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>z:=~0.1,0.5~; z^3+z^2-2*z

~-0.99,0.18~

>ieval("x^3+x^2-2*x",~0.1,0.5~)

~-0.7,-0.17~

>mxmieval("x^3+x^2-2*x",~0.1,0.5~,10)

~-0.63,-0.18~

Example

We measure the angle of a tower in 100 m distance as 11:25� above ground. How

high is the tower? All measurement have only the given accuracy. So we use proper

intervals to estimate the result. For comparison, we use a pseudo-exact computation.

>sin(11.25°±0.005°)*(100±1)

~19.3,19.8~

>sin(11.25°)*100

19.5090322016

There is also a simple way to estimate the error. Because of

� sin(x)

x
=

�sin(x)

�x
� �x
x

� cos(x) � �x
x

the sine function decreases the relative error for x 6= 0. And the multiplication of

two values a and b satis�es

�ab

ab
=

(a+�a)(b+�b)� ab

ab
� �a

a
+
�b

b

neglecting �a�b. Thus the multiplication adds the relative errors. In our exam-

ple, we get a relative error of approximately 1% from the bad measurement of the

distance, which is approximately 0:2m of height.

Example

The error of the Simpson formula with step size h = (b� a)=n is equal to

h4

180
sup

x2[a;b]
f (4)(�)

for some � in the interval. We use that to get a guaranteed inclusion for the integral

in EMT. The function mxmisimpson uses Maxima to compute the fourth derivative.

The exact value can be computed using the erf function of Maxima.
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>mxmisimpson("exp(-x^2)",0,1,100)

~0.7468241328113,0.7468241328136~

>longest romberg("exp(-x^2)",0,1)

0.7468241328139768

>longest &:float(integrate(exp(-x^2),x,0,1))

0.74682413281243

This can be done by hand too. We need an estimate for the fourth derivative of the

function. This derivative increases for x > 0. A computation in Maxima yields the

following.

>&diff(exp(x^2),x,4), f4max := %(1)

2 2 2

4 x 2 x x

16 x E + 48 x E + 12 E

206.589418963

We take 210 as a good estimate. Now we compute the Simpson integral

S(h) =
h

3
(f(0) + 4f(h) + 2f(2h) + : : :+ 2f(1� 2h) + 4f(1� h) + f(1))

and add the estimate for the error.

>n=1000; f=ones(n+1); f[2:2:n]=4; f[3:2:n-1]=2; f[1:5], f[-5:-1]

[1, 4, 2, 4, 2]

[2, 4, 2, 4, 1]

>h=1/~n~; x=(0:n)*h; sum(exp(-x^2)*f)*h/3+h^4/180*~0,210~

~0.7468241328123,0.7468241328137~

Finally, we can also use the function mxmiint to get a very narrow inclusion for the

integral using Maxima and even higher derivatives.

>mxmiint("exp(-x^2)",0,1)

~0.746824132812408,0.746824132812446~

Further Information

a && b Intersection of intervals

a || b Interval containing the union of intervals

a << b Tests, if a is contained in b

a <<= b The same, where equality is allowed

expand(a,f) Expands a by the factor f

mxminewton etc. See the chapter about exact arithmetic
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5.3 Strings

Strings are the non-numerical data type in EMT. They are used for expressions,

and also for things like �le input and output, or for labels in plots. Many functions

accept expressions, as we have already seen. Strings are also used to communicate

with Maxima. Strings can form vectors, but not matrices.

Here are some examples of string functions.

>s:="This is a test",

This is a test

>strlen(s)

14

>ascii(s) // first character in a

84

>char(84)

T

>substring(s,6,8)

is

>substring(s,-4,-1)

test

>substring(s,strfind(s,"a",0),-1)

a test

>"affe"<="bravo"

1

>s+" "+s

This is a test This is a test

There are also vectors of strings. plot2d uses these vectors to plot more than one

expression.

>plot2d(["sin(x)","cos(x)"],0,2pi):

For interactive programs, there is the input function. The input is interpreted as

a numerical expression. If there is an error, EMT will prompt the user again, until

the expression is valid or the user presses the Esc key.
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Example

The following commands should be entered into an EMT �le. To do this, press F9

in an empty line to open the internal editor, and copy and paste the following text

into the editor.

"Prime factors.",

n=input("Enter a number: ");

"Factors:", factor(n),

If this �le is loaded, we get the following dialog between the user and EMT.

>load "C:\Users\ReneEMTEulerTemp.e"

Prime factors.

Enter a number: ? >10234

Factors:

[2, 7, 17, 43]

Further Information

strfind Finds substrings

tolower Converts to lower case

toupper Converts to upper case

sort Sort a vector of strings

5.4 Collections and Lists

Collections can contain any data type. In EMT, collections are immutable objects.

Collections can collect data at one place. E.g., it is an alternative way to return

multiple values from a function (see the section about programming).

To create a collection, use {{...}}. To access an element of the collection use

indexing.

>C={{"first",1:3,3}}

first

[1, 2, 3]

3

>C[2]

[1, 2, 3]
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Collections are not meant to be used as lists. EMT has an own list type. Such lists

are stored globally in a separate variable space. Lists are mutable by the glist

functions.

>glist("test");

>for k=1 to 10; glistadd("test","element"+k); end;

>glistvar("test",5)

element5

One of the main purpose of collections is to collect function names and additional

parameters (besides x etc.) for algorithms and plot functions.

>function f(x,y,a,b) := a*x^2+b*x*y+y^2;

>plot3d({{"f",2,-1}},>spectral,cp=2): // with a=2, b=-1

This works, because collections can be evaluated if the �rst element is the name of

a function or an expression.

>function f(x,a) := a*exp(x/a);

>L={{"f",4}}; L(5) // with a=4

13.9613718298

Note that the argument 5 of the call L(5) is used for the parameter x. But f needs

another parameter. If a had a default value the same technique would work just as

well.

>function f(x,a=4) := a*exp(x/a);

>L(5)

13.9613718298

>L={{"f"}}; L(5)

13.9613718298

>L={{"f",6}}; L(5)

13.8058553454

The same trick works for expressions. But then, additional parameters must be

named. Note that expressions can see global variables anyway. But if algorithms

are called in functions the evaluation cannot see the local variable of the function.

Nevertheless, we demonstrate the use evaluation of a collection with an expression

on the global command line.

>solve({{"a*x^2-x/a",a=7}},1), "a*x^2-x/a"(%,a=7)

0.0204081632653

0
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5.5 Polynomials

Polynomials are not a primitive data type. They are stored in EMT as vectors of

coe�cients starting with the constant coe�cient. EMT can evaluate, add, multiply,

divide, and di�erentiate polynomials. Here are some examples. We compare the

results to Maxima.

>p:=[1,2,3]; polyval(p,2)

17

>pd:=polydif(p); polyval(pd,2)

14

>&diff(1+2*x+3*x^2,x)(2)

14

>p2:=polymult(p,p)

[1, 4, 10, 12, 9]

>&expand((1+2*x+3*x^2)^2)

4 3 2

9 x + 12 x + 10 x + 4 x + 1

>&expand((1+2*x+3*x^2)^2)(2)

289

>polyval(p2,2)

289

The zeros of polynomials can be computed in EMT using a numerical method. EMT

�nds all complex zeros. Here is a comparison with Maxima.

>polysolve(p)

[ -0.333333-0.471405i, -0.333333+0.471405i ]

>sol &= solve(1+2*x+3*x^2=0,x)

- sqrt(2) I - 1 sqrt(2) I - 1

[x = ---------------, x = -------------]

3 3

>sol()

[ -0.333333-0.471405i, -0.333333+0.471405i ]

Of course, EMT has methods to interpolate with polynomials, �t polynomials to

values or for FFT. Those numerical methods are described later.
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Further Information

polydiv(p,q) Divides with remainder (multiple returns!)

polytrunc Minimizes the degree of the polynomial

polyadd Adds polynomials

polycons Generates a polynomial from its zeros



Chapter 6

The Matrix Language

6.1 Matrices and Vectors

A matrix in EMT is entered using brackets [...]. The values of each row are

separated by commas, the rows are separated by semicolons. Incomplete rows are

�lled with zeros.

>[1,2;3,4]

1 2

3 4

>a:=3;

>short [1,a;0,1,a;0,0,1,a]

1 3 0 0

0 1 3 0

0 0 1 3

An alternative, which does also work in Maxima is the matrix command.

>matrix([1,2],[3,4])

1 2

3 4

Long vectors and matrices may not print in full size. To change this use the operator

showlarge, or set the long display permanently with largematrices on.

119
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>showlarge random(10,10)

Column 1 to 5:

0.569967 0.4412 0.654399 0.451402 0.785921

0.731288 0.521804 0.0518588 0.0406859 0.0696735

0.144432 0.240932 0.896927 0.449284 0.180431

0.819952 0.525137 0.128366 0.545064 0.279446

0.232776 0.611871 0.56501 0.874601 0.0899351

0.266388 0.502768 0.490759 0.108418 0.4919

0.962636 0.417781 0.186796 0.997298 0.143285

0.829819 0.579399 0.206967 0.821727 0.446005

0.312018 0.234889 0.713802 0.342169 0.837105

0.840361 0.624917 0.404306 0.447133 0.892916

Column 6 to 10:

0.673755 0.189846 0.0871873 0.178585 0.660332

etc.

A vector is simply a matrix with one row or column. The transposition of a matrix

is indicated by A’.

>A:=[1,2;3,4;5,6]

1 2

3 4

5 6

>A’

1 3 5

2 4 6

An often used way to generate matrices is the : operator. It can have a step value

(may be negative), or the default step value 1. By numerical reasons, adding the

steps will not always exactly meet the �nal value. EMT uses the internal epsilon to

check for this.

>matrix([1,2],[3,4])

1 2

3 4

>0:0.1:1

[0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]

>1:3

[1, 2, 3]

>sum(1:1000)

500500

There are many functions that generate a matrix. Here are some examples.
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>zeros(2,2)

0 0

0 0

>ones(5)

[1, 1, 1, 1, 1]

>id(2)

1 0

0 1

>A=2*id(3); setdiag(A,1,[-1,-1])

2 -1 0

0 2 -1

0 0 2

Matrices can also be appended to each other, horizontally or vertically.

>v:=1:3

[1, 2, 3]

>v|v

[1, 2, 3, 1, 2, 3]

>v_v

1 2 3

1 2 3

>v_1

1 2 3

1 1 1

To access a single matrix element, or a submatrix, EMT uses square brackets as in

A[i,j]. Round brackets (parentheses) are supported, but switched o� by default.

Omitting the column index returns a line of A, unless A is a row vector. For a

column, leave the row index open or set it to :.

Always remember, that EMT matrices start with the index 1. A[0] yields an empty

matrix, or an error message depending on a global ag!

If the indices are vectors, we get a submatrix. The indices may even be unsorted.

In this case, we get a permutation of the rows or columns. Negative indices count

from the end of the matrix. Here are some examples.

>v:=[1,2,3,4,5]

[1, 2, 3, 4, 5]

>v[4]

4
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>v[-1]

5

>v[3:5]

[3, 4, 5]

>A=[1,2,3;4,5,6;7,8,9]

1 2 3

4 5 6

7 8 9

>A[1,3]

3

>A[1]

[1, 2, 3]

>A[1:2,1:2]

1 2

4 5

>A[,2]

2

5

8

>A[[2,1],-1]

6

3

It is possible to assign values to a submatrix. Take care that the values must �t into

the submatrix. It is also possible to assign a single number to a submatrix. In this

case, all elements of the submatrix will be set to this number.

>v:=1:5

[1, 2, 3, 4, 5]

>v[2:3]:=0

[1, 0, 0, 4, 5]

>A:=[1,2,3,4,5;1,2,3,4,5]

1 2 3 4 5

1 2 3 4 5

>A[[1,2],[2,3]]:=[8,9;10,11]

1 8 9 4 5

1 10 11 4 5

Note, that submatrix indexing can also be applied to the result of functions, if the

result is of the matrix type. E.g., the shuffle function shu�es vectors randomly,

and we can extract the �rst 6 values with index 1:6.

>sort(shuffle(1:49)[1:6])’
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27

28

32

44

45

48

Further Information

linspace(a,b,n) n equidistant points in [a; b]

equispace(a,b,n) points distributed in the arcsine distribution

size(A) The size [c,r] of A

cols(A) Number of columns of A

rows(A) Number of rows of A

diag(A,k) k-th diagonal of A

redim(A,n,m) Reformat A into a new matrix

6.2 The Matrix Language

The basic rule of the matrix language is that all functions and operators are eval-

uated element for element (vectorized). So the multiplication � is not the matrix

multiplication, but the elementwise multiplication. The matrix multiplication uses

a dot as in A.B.

>v:=[1,2,3]; v*v

[1, 4, 9]

>sqrt([1,2;3,4])

1 1.41421

1.73205 2

When combining a matrix with a vector in one operation, EMT tries to bring the

vector to the same size as the matrix by duplicating the vector in a natural way, so

that the result can be computed element for element. A row vector and a column

vector will combine to a matrix (like a tensor product). Moreover, using a scalar

number and a matrix in one operation will combine the scalar number with all

elements of the matrix.

>v:=[1,2,3]; 2*v+4*v

[6, 12, 18]
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>w:=[1;-1;0]

1

-1

0

>v*w

1 2 3

-1 -2 -3

0 0 0

In the last example above, the resulting matrix A has the property that

ai;j = vj � wi:

I.e., EMT uses the elements from the rows of w and the columns of v to form the

matrix. Imagine v duplicated three times vertically, and w appended three times

horizontally. Of course, this is not the matrix product!

The same rule applies to all operations, also for comparisons like >, which deliver 1

or 0 elementwise.

Example

The Pascal triangle is usually written as

1

1 1

1 2 1

1 3 3 1

Since we do not have triangle matrices in EMT, we use a square matrix, �lled with 0.

This is very easy to achieve, since bin(n,m) follows the matrix rules, and moreover

delivers 0, if m < 0 or m > n.

>goodformat(5,2); n:=0:5; bin(n’,n)

1 0 0 0 0 0

1 1 0 0 0 0

1 2 1 0 0 0

1 3 3 1 0 0

1 4 6 4 1 0

1 5 10 10 5 1
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Figure 6.1: The functions xn

Example

We already plotted functions using expressions. However, it is also possible to plot

a table of values.

>x:=-1:0.01:1; n:=(1:5)’; plot2d(x,x^n):

The second example works, since n is a column vector. Thus xn is the matrix0
BB@
x1 : : : xm
...

...

x51 : : : x5m

1
CCA :

The function plot2d plots every row of the matrix as a separate function, using the

same x-values for all rows.

We remark that expressions in plot2d can also produce several plots in one com-

mand very easily. Simply use a column vector in the expression.

>plot2d("x^(1:10)’",0,1);
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Example

We compute the Gau� algorithm for

x+ y + z = 1

2x+ z = 2

x� y = 1

step by step.

>fracformat(10);

>A:=[1,1,1;2,0,1;1,-1,0]; b:=[1;2;1]; M:=A|b

1 1 1 1

2 0 1 2

1 -1 0 1

>M[2]:=M[2]-2*M[1]; M[3]:=M[3]-M[1]

1 1 1 1

0 -2 -1 0

0 -2 -1 0

>M[2]:=M[2]/(-2); M[3]:=0

1 1 1 1

0 1 1/2 0

0 0 0 0

>M[1]:=M[1]-M[2]

1 0 1/2 1

0 1 1/2 0

0 0 0 0

The result reads as

x1 = 1� x3
2
; x2 = �x3

2
;

where x3 is arbitrary.

There is the function pivotize which makes everything easier. It changes the Gau�

tableau in each step.

>fracformat(10);

>A:=[1,1,1;2,0,1;1,-1,0]; b:=[1;2;1]; M:=A|b

1 1 1 1

2 0 1 2

1 -1 0 1

>pivotize(M,1,1)

1 1 1 1
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0 -2 -1 0

0 -2 -1 0

>pivotize(M,2,2)

1 0 1/2 1

0 1 1/2 0

0 0 0 0

Of course, there is also the function echelon which does everything in one step.

>fracformat(10);

>A:=[1,1,1;2,0,1;1,-1,0]; b:=[1;2;1]; M:=A|b

1 1 1 1

2 0 1 2

1 -1 0 1

>echelon(M)

1 0 1/2 1

0 1 1/2 0

Example

Here is an example in the complex plane. The following code generates 1000 complex

numbers z evenly spaced around the unit circle (roots of unity). Then we map these

numbers with z 7! z2 + z, and plot those values. The function plot2d knows how

to plot a path of complex values.

>x:=linspace(0,2pi,1000); z:=exp(I*x);

>plot2d(z+z^2,r=2);

We could also plot a grid of complex numbers.

>x:=-1:0.1:1; y:=x’; z:=x+1i*y;

>plot2d(exp(z),r=3):
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Figure 6.2: Image of the unit circle with w = z2 + z

Example

How many prime numbers are less than n? And which of them have the formm2+1?

>n:=100000; k:=3:2:n; sum(isprime(k))+1

9592

>k[nonzeros(isprime(k) && k==floor(sqrt(k))^2+1)]

[5, 17, 37, 101, 197, 257, 401, 577, 677, 1297, 1601, 2917,

3137, 4357, 5477, 7057, 8101, 8837, 12101, 13457, 14401,

15377, 15877, 16901, 17957, 21317, 22501, 24337, 25601, 28901,

30977, 32401, 33857, 41617, 42437, 44101, 50177, 52901, 55697,

57601, 62501, 65537, 67601, 69697, 72901, 78401, 80657, 90001,

93637, 98597]

This examples show that boolean operators like && are also vectorized.
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Further Information

max(A),min(A) Maximum and minimum of the rows of A

totalmax(A),totalmin(A) Maximum of all values in A

extrema(A) Maximum and minimum plus the indices

sort(v) Sorts v

6.3 Linear Algebra

For the multiplication of matrices we use the dot A.x. Thus v’.w is the scalar

product between column vectors (also scalp(v,w)). The cross product is computed

with crossproduct (works for row an column vectors).

>v:=[1;2;3]

1

2

3

>v’.v

14

>crossproduct(v,[1;1;2])

1

1

-1

>crossproduct(v’,[1;1;2]’)

[1, 1, -1]

The inverse matrix can be computed with inv(A). Note that A^(-1) would deliver

the inverses of the elements of A. By the same reason, the matrix powers have to

be computed with matrixpower(A,n).

>shortformat; A:=[1,2;2,1]

1 2

2 1

>det(A)

-3

>fracprint(inv(A));

-1/3 2/3

2/3 -1/3

>matrixpower(A,-5).matrixpower(A,5)

1 0

0 1
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Of course, the last example does not deliver the identity matrix exactly. The default

output format rounds this, however.

To solve a linear system, use the backslash operator.

>A:=[2,2,2;1,2,2;1,1,2]

2 2 2

1 2 2

1 1 2

>b:=A.[1;1;1]

6

5

4

>A\b

1

1

1

Note, that this is more e�cient then inv(A).b. If A is not regular (numerically

detA = 0), you will get an error message.

Further Information

kernel(A) Kernel of A

svdkernel(A) Orthogonal basis of the kernel

image(A) Image of A

svdimage(A) Orthogonal basis of the image

rank(A) Rank of A

lu(A) LU decomposition of A (See help lu)

6.4 Regression Analysis

If a system Ax = b has no solution, we can try to minimize the norm kAx � bk
using the function fit. This is always necessary if there are more equations than

unknowns.

>A:=[1,1;2,1;3,1]

1 1

2 1

3 1

>b:=[2;3;2]
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2

3

2

>x:=fit(A,b)

0

2.33333

>norm(A.x-b)

0.816496580928

fit uses Givens rotations. The alternative is to use fitnormal, which uses the nor-

mal equation. It fails, if A does not have maximal rank. The function svdsolve uses

a more complicated method involving singular values. As an advantage, svdsolve

delivers the result with minimal norm, if there is more than one result.

>A:=[1,2,3;4,5,6;7,8,9]

1 2 3

4 5 6

7 8 9

>det(A)

0

>b:=A.ones(3,1)

6

15

24

>svdsolve(A,b)

1

1

1

There is the function polyfit to �t polynomials of a given degree to given data.

Example

Let us �t a polynomial of degree 2 to the exponential function on [�1; 1]. The error
is approximately 0.07.

>x:=-1:0.1:1; y:=exp(x); p:=polyfit(x,y,2)

[0.995583, 1.11404, 0.540186]

>plot2d(x,y,>points); plot2d("polyval(p,x)",>add,color=red):
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Figure 6.3: A best polynomial �t

Example

In this example we �t functions of the form

f(x) = ae�x + be�2x + c

to measurements

(x1; y1); : : : ; (xn; yn):

We generate the measurements arti�cially adding random errors to a given func-

tion. The matrix for the �t contains the basis functions evaluated at the points of

measurement. 0
BB@
e�x1 e�2x1 1
...

...
...

e�xn e�2xn 1

1
CCA :

Such a matrix can be generated very easily using the matrix language of EMT.

>function f(x,a,b,c) := a*exp(-x)+b*exp(-2*x)+c
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>x:=0:0.1:1; y:=f(x,1,0.8,0.5)+normal(size(x))*0.01;

>A:=f(x’,1,0,0)|f(x’,0,1,0)|f(x’,0,0,1);

>s:=fit(A,y’)

0.93761

0.855681

0.510332

>plot2d(x,y,>points); plot2d(x,(A.s)’,>add,color=red):

Example

For non-linear �ts, EMT must use numerical methods to minimize functions of

several variables. We will talk about these methods later. For an example, we �t

with the following type of functions.

fp(x) = p1 cos(p2x) + p2 sin(p1x):

The function name is provided to modelfit as an argument, plus a start point, the

data and a switch to use Powell's method for minimization.

>function model(x,p) := p[1]*cos(p[2]*x)+p[2]*sin(p[1]*x);

>xdata = [-2,-1.64,-1.33,-0.7,0,0.45,1.2,1.64,2.32,2.9]; ...

>ydata = [0.699369,0.700462,0.695354,1.03905,1.97389,2.41143, ...

> 1.91091,0.919576,-0.730975,-1.42001];

>pbest=modelfit("model",[1,0.2],xdata,ydata,>powell)

[1.88185, 0.70023]

>plot2d(xdata,ydata,>points); plot2d("model(x,pbest)",color=red,>add):

6.5 Eigenvalues and Singular Values

Eigenvalues are computed with eigenvalues, eigenvectors with eigenspace. Of

course, we can also compute the characteristic polynomial, and its zeros using

polysolve.

In the following example, we compute the eigenvector with the function kernel.

The eigenvalues will always be complex. However, we can convert to real, since our

matrix is known to have real eigenvalues.

>A:=[1,2;2,1]

1 2

2 1
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Figure 6.4: Fit with a function fp(x)

>charpoly(A)

[-3, -2, 1]

>real(polysolve(charpoly(A)))

[-1, 3]

>l:=re(eigenvalues(A))

[3, -1]

>eigenspace(A,-1)

-0.707107

0.707107

>v:=kernel(A-l[2]*id(2))

-1

1

>A.v

1

-1

>{l,M}:=eigen(A); re(l)

[3, -1]

>re(M.A.inv(M))

-1 0
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0 3

The function eigen returns two values, a vector with the eigenvalues, and a matrix

M of eigenvectors. It is known that

MAM�1 = D:

If A is symmetric, EMT delivers an orthogonal M , and we have M�1 =M 0.

Singular Values compute a decomposition of an n�m matrix A in the form

A = UDW 0:

The n columns of U will be orthonormal. D is a m�m diagonal matrix, and W is

orthogonal.

>A:=[1,2,3;4,5,6]

1 2 3

4 5 6

>{U,d,W}:=svd(A);

>d

[9.50803, 0.77287, 0]

>U

-0.386318 -0.922366 0

-0.922366 0.386318 0

>U.U’

1 0

0 1

>W.W’

1 0 0

0 1 0

0 0 1

>U.diag(3,3,0,d).W’

1 2 3

4 5 6

Further Information

xeigenvalue(A,l) Tries to improve the eigenvalue l numerically.

jacobi(A) Jacobi method for symmetric A
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6.6 Sparse Matrices

EMT has support for sparse matrices. This is a special data type, which only saves

the non-zero indices of a matrix. There are functions to handle or modify sparse

matrices, and to convert to and from ordinary matrices.

The function cpx compresses a matrix into the internal compressed mode. The

function determines zero entries using the internal epsilon. To convert back to

ordinary matrices, use decpx.

>A=id(6)*2+diag(6,6,-1,1)+diag(6,6,1,1); short A

Real 6 x 6 matrix

2 1 0 0 ...

1 2 1 0 ...

0 1 2 1 ...

0 0 1 2 ...

0 0 0 1 ...

0 0 0 0 ...

>R=cpx(A)

Compressed 6x6 matrix

1 1 2

1 2 1

2 1 1

2 2 2

2 3 1

3 2 1

3 3 2

3 4 1

4 3 1

4 4 2

4 5 1

5 4 1

5 5 2

5 6 1

6 5 1

6 6 2

Compressed matrices can be multiplied rapidly. The following would take much

longer using the usual multiplication.

>n=1000; A=id(n)*2+diag(n,n,-1,1)+diag(n,n,1,1);

>R=cpx(A);

>R2=cpxmult(R,R);
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Example

In the following example we build a random sparse matrix, and set b in Ax = b

equal to the sums of the rows. To get such a matrix, we use cpxset, which takes

rows of the form (i; j; ai;j). To make sure the matrix is regular, we set the diagonal

to a large value 20.

Then we solve the linear system, using the conjugate gradient method for large,

sparse systems, as implemented in the function cpxfit.

>H=cpxzeros(1000,1000);

>ind=intrandom(10000,2,1000);

>H=cpxset(H,ind|normal(rows(ind),1));

>H=cpxsetdiag(H,0,20);

>b=cpxsum(R);

>x=cpxfit(R,b);

>totalmax(cpxmult(R,x)-b)

2.27965202271e-010

Sparse matrices are used as incidence matrices of graphs holding the values of the

edges running between the points of the graph. There are special functions to create

and modify those matrices.
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Chapter 7

Functions of Several Variables

7.1 3D Plots

Figure 7.1: f(x; y) = y2 � x2 sin(x) + x=2

Just as plot2d plots planar graphs, the function plot3d plots functions of two

139
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variables and other objects in 3D graphs using central projection (vanishing line

projection).

There are the following basic types of 3D plots in EMT.

� Solid plots. Plots the graph of a function in two variables, or a surface de-

termined by three matrices of x- y- and z-coordinates. The surface can have

two di�erent color sides or shading. Some types compute the shading by the

light source, others by the z-coordinate. The shading can be shades of a single

color, or di�erent types of spectral shadings.

� Line plots. These plots show only lines in 3D. The lines can also form a grid.

� Point plots. These plots show a cloud of points in space.

EMT has no true 3D scenes. The plots are done by sorting the objects from back

to front. It is possible to plot several items into one plot if the order is carefully

observed. There are some examples for this in the tutorial. If you need true photo

realistic 3D scenes consider using the interface to Povray that EMT provides.

Let us show some basic plots. We �rst want to plot the graph

G = f(x; y; f(x; y)) : a � x � b, c � y � dg

of a function of two variables.

There are two basic types. The �rst type is a grid plot with two sides of di�erent

con�gurable colors (see �gure 7.2).

>plot3d("x^2+y^2",a=-2,b=1,c=-2,d=1,>user);

The second type shows a surface with a hue and level lines. The hue can depend on

the z-coordinate and can be a spectral color or a simple color with shades. Or the

shading can depend on the light fall on the plot. This type of plots can also contain

level lines. The level line of level c is

Nc = f(x; y; f(x; y)) : f(x; y) = cg:

It is drawn directly on the 3D-plot in the height z = c. It is possible to add a color

plane underneath the plot (see �gure 7.1).

>plot3d("y^2-x^2*sin(x)+x/2",>hue,>levels,n=100, ...

> >hue,cp=1,cpcolor=spectral,cpdelta=0.2,zoom=2.8):
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Figure 7.2: The function f(x; y) = xy

Plots of functions or expressions are scaled by default to �t into the unit cube

(scale=1). Moreover, the function values z = f(x; y) are scaled to agree with the

x-y-range. To change this set <fscale, or set the value to some other maximal

function value.

The range for the plot can be set with a, b, c, d, or with a radius r, by default

around the origin. For the view, the most important options are the angle and the

height of the plot, or the zoom for magni�cation.

User interaction is done with >user. The user can then turn the plot with the

cursor keys, zoom in or out with + or -, move the center of the view, or generate an

anaglyph plot with a. To reset the view, press Return.

The center of the plot is the point the view looks at. It is usually the origin of

the coordinate space, but can be set to any other point. If the plot is interactive

(>user), the user can set the center with the cursor keys, once he toggled into the

center mode with the key c.

All plots can be drawn as anaglyph plots. To view this properly, you need red/cyan

glasses. The 3D e�ect is amazing.
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>aspect(2); plot3d("sin(x^2+y^2)*exp((-x^2-y^2)/5)",r=4,>polar, ...

> <frame,n=200,fscale=0.8,>hue,scale=3,>anaglyph,center=[0,0,0.5]):

Figure 7.3: Anaglyph plot for red/cyan glasses

There are many more settings to change the look of the plot. Have a look into the

documentation of plot3d.

Further Information

zoom(5) Global setting for zoom factor.

viewdistance(2.5) Viewing distance.

viewangle(45°) Angle of view.

viewheight(45°) Angle above the x-y-plane.

fillcolor(n,m) Set the colors simple 3D plots.

reset() Resets to default parameters for graphics.

7.2 Surfaces, Curves and Points

This section contains some examples for other types of 3D plots. A parameterized

3D surface can be done with three functions or expressions in x and y, or with three

matrices. The surface is modeled by a mapping f : Q! R
3, where Q is a rectangle

in the plane R2.

>allwindow; ...

>plot3d("cos(x)*cos(y)","sin(x)*cos(y)","sin(y)", ...

> a=0,b=2*pi,c=-pi/2,d=pi/2, ...

> >hue,color=blue,light=[1,0,1],<frame, ...

> n=90,grid=[18,36],wirecolor=darkgray,zoom=4.5):
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Figure 7.4: Shaded 3D Object

The expressions in this code de�ne a ball. The parameter functions are simply

expressions in x and y. Of course, functions of the form f(x; y) can be used too.

The command allwindow takes the full window for the plot. Otherwise the plot

leaves room for the plot title. For a plot without a grid it is often better to set

the zoom manually. The zoom is simply set so that the ball �lls the image. The

rectangle for the parameterization is de�ned by a, b, c, c.

For the plot, we used a shaded model with a speci�c light source. The frame was

disabled. We want 18 grid lines for the lines of latitude and 36 for the lines of

longitude. The number of grid lines should be a divisor of the number of surface

elements. Both items can be di�erent in each direction of the rectangle.

The following plot is the M�obius strip. This time. we compute three matrices for

the three parameters. The parameter hue=2 turns shading on, but the hue will not

depend on the side of the surface. The value max determines the maximal darkness.

>aspect(16/9); allwindow; ...
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>x:=linspace(0,2*pi,100); y:=(-1:0.1:1)’; ...

>plot3d(cos(x)*(1+y/2*cos(x/2)),sin(x)*(1+y/2*cos(x/2)),y/2*sin(x/2), ...

> <frame,hue=2,max=0.9,scale=2.7):

Figure 7.5: Moebius strip

3D Curves are drawn with three parameter functions and the optional parameter

>lines. We have enable interaction with >user. The plot shows a helix.

>reset; ...

>plot3d("sin(x)","cos(x)","x/2Pi",>lines,xmin=0,xmax=10pi,n=100,>user):

Alternatively, three vectors or matrices can be used. If >lines is set the plot will

only show the lines in one direction. The coordinates are then in the rows of the

matrices. Here is the M�obius strip again with lines only.

Figure 7.6: M�obius strip

Points in 3D are drawn with the parameter >points. We need three vectors for the

coordinates of the points. The following commands generate a cloud of randomly

normal distributed values in space.

>A:=normal(3,10000); plot3d(A[1],A[2],A[3],>points,style=".");
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The following plot shows a Brownian motion, which we get with a cumulative sum of

the coordinates. We show the plot as an anaglyph plot. You need red/cyan glasses

to see the fascinating 3D e�ect.

>A:=normal(3,10000); B:=cumsum(normal(3,1000)); ...

>plot3d(B[1],B[2],B[3],>wire, ...

> linewidth=1,>anaglyph,zoom=3.5):

Figure 7.7: Brownian path as anaglyph

There are many more tricks for 3D plots in EMT. For details, see the tutorial about

3D plots and the many examples of such plots in the notebooks that are installed

with EMT.

7.3 Solving Equations of Several Variables

To solve non-linear systems of equations of several variables, EMT has the fast

Newton algorithm and the Broyden method. The stable Nelder-Mead or the Powell

algorithms for minimization can also be used. Moreover, there is a variant of the

Newton algorithm delivering guaranteed inclusions.
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Example

Let us solve the system of equations

x2 + y2 = 1; y = e�xy:

For this, we write a function f as

[x; y] 7! [x2 + y2 � 1; y � exp(�xy)]:

We seek the zeros of this function. First we plot the level line for the value 0 of both

functions. In the plot we can clearly see two solutions of the system of equations.

We ignore the obvious solution x = 0, y = 1.

>f1 &= x^2+y^2-1; f2 &= y-exp(-x*y);

>plot2d(f1,r=1.2,level=0); plot2d(f2,level=0,>add):

Figure 7.8: Solutions of two equations

The Broyden method works very well here. We need to de�ne a vector valued func-

tion for broyden. We can de�ne a symbolic function using our symbolic expressions.
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>function f([x,y]) &= [f1,f2]

2 2 - x y

[y + x - 1, y - E ]

>type f

function f ([x, y])

useglobal; return [y^2+x^2-1,y-E^-(x*y)]

endfunction

Note that f([x,y]) is a very speci�c function de�nition which allows f to be used

for a vector as in f(v) or for two values as in f(x,y). We could de�ne f numerically

only in the following way.

>function f(v) := [v[1]^2+v[2]^2-1,v[2]-exp(-v[1]*v[2])];

Now we can start the Broyden algorithm and �nd the solution in the �rst quadrant.

For a starting point we take x = 1, y = 0.

>longest broyden("f",[1,0])

0.7880470947327539 0.6156149579755725

For the Newton method, we need the Jacobian matrix of derivatives. We can com-

pute it with Maxima at compile time of Df.

>function Df([x,y]) &= jacobian([f1,f2],[x,y])

[ 2 x 2 y ]

[ ]

[ - x y - x y ]

[ y E x E + 1 ]

>type Df

function Df ([x, y])

useglobal;

return matrix([2*x,2*y],[y*E^-(x*y),x*E^-(x*y)+1]);

endfunction

The function newton2 implements the Newton method, and the function inewton2

implements the interval Newton method, which provides a guaranteed and good

inclusion of the result.
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>longest newton2("f","Df",[1,0])

0.7880470947327539 0.6156149579755725

>inewton2("f","Df",[1,0])

[ ~0.788047094732753,0.7880470947327548~,

~0.61561495797557209,0.61561495797557297~ ]

Another stable method is the Nelder-Mead algorithm, which minimizes functions

f : Rn ! R. We use it for the function f(v) = kvk.

>function g(v) := norm(f(v))

>longest neldermin("g",[1,0])

0.7880470947328121 0.6156149579760124

The algorithm is not very fast. For very high dimensions, it cannot be recommended.

There is also a generalization of the Newton method for functions from a lower into

a higher dimension, the Levenberg-Algorithm. This algorithm minimizes kvk for

v = f(w). It needs a Jacobian too, which we can compute with Maxima. For a test,

we compare with the Nelder-Mead algorithm.

>expr &= [x^3+y,x-y,x+y-1] // function from two to three variables

3

[y + x , x - y, y + x - 1]

>function f([x,y]) &= expr

3

[y + x , x - y, y + x - 1]

>function Df([x,y]) &= jacobian(@expr,[x,y])

[ 2 ]

[ 3 x 1 ]

[ ]

[ 1 - 1 ]

[ ]

[ 1 1 ]

>longest nlfit("f","Df",[2,1])

0.4063570133455459 0.3109666275848427

>function g([x,y]) := norm(f([x,y]))

>longest nelder("g",[2,1])

0.4063568110959406 0.3109663066957633
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Solutions of non-linear systems of equations are also used for best �ts in regression

analysis. We provide a typical example, where a function with a linear part and an

exponential part is �tted to data in least square sense.

>x=-4:4; y=exp(x)-x+normal(size(x))/3;

>function model(x,[a,b,c,d]) := a+b*x+c*exp(d*x);

>p=modelfit("model",[2,2,2,2],x,y)

[-0.496495, -1.10157, 1.24337, 0.950208]

>plot2d(x,y,>points); plot2d("model(x,p)",>add):

Figure 7.9: Nonlinear Fit

Depending on the model, the process is very sensitive to starting values. The Nelder-

Mead method is usually more stable than the algorithm of Powell.

7.4 Implicit Functions

EMT can draw the solutions of f(x; y) = c for one or more values c (contour plots),

and also implicit surfaces with an equation f(x; y; z) = 0. Use plot2d with the

parameter levels=... for this, or plot3d with the parameter implicit=....
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For plot2d, the values of c are either a number, or a row vector of values. The pa-

rameters levels="auto" or >contour will use equal spaced values. The additional

parameter >hue indicates the values of the functions with a shading. Black means

low values, and white means high values. The color can be set with color. There

is also a spectral scheme with >spectral.

Alternatively, the function plot3d can be used with >contour. This yields a three

dimensional plot with shading and contour lines.

Implicit plots of f(x; y) = c can show ranges of levels c1 � f(x; y) � c2 in 2D and

3D. These ranges are given as matrices with the lower values in the �rst row and

the upper values in the second row. Thus we can mark a region which satis�es a

side condition depending on one function.

>plot2d("2*x^2+y^2+x*y+x+2*y",r=3,levels=[1;2], ...

> style="/",color=green,grid=6):

Figure 7.10: Solutions of 1 � 2x2 + y2 + xy + x+ 2y � 2
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Example

For an example, we investigate the function f(x; y) = xy � yx for x; y > 0. First we

plot the solution of the equation xy = yx in the range 0 � x; y � 5.

>function f(x,y) := x^y-y^x;

>plot2d("f",a=0,b=5,c=0,d=5,n=100, ...

> level=0,>hue,>spectral,contourcolor=red,contourwidth=3):

Figure 7.11: Solutions of xy = yx

It is interesting to see the 3D plot of f(x; y) in the region 2 � x; y � 3. Add user

interaction, so that the user can inspect the saddle point form all sides. The default

>contour without speci�cation of level values will plot ranges of levels.

>plot3d("f",xmin=2,xmax=3,ymin=2,ymax=3,>user,>spectral,>contour):

You can �nd more examples, also for surfaces, in the introduction notebooks.
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Figure 7.12: Plot of xy � yx



Chapter 8

Programming Euler

8.1 Functions

In the introduction, we have already met one-line functions. This kind of function

de�nition is the most elementary and often good enough. One-line functions can use

global variables automatically. Alternatively, variables can be passed as arguments.

>function f1(x) := m*x+t

>t:=1; m:=-0.25; f1(3)

0.25

>function f2(x,m,t) := m*x+t

>f2(0:4,-0.25,1)

[1, 0.75, 0.5, 0.25, 0]

EMT can assign default values to parameters (default parameters). Those parame-

ters need no value, when the function is called.

>function logb(x,base=10) := log(x)/log(base)

>logb(100)

2

>logb(1024,2)

10

Multi-line functions begin with function and end with endfunction. They must

contain a return statement somewhere if a value must be returned.

153
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>function f3 (x)

$ if x<0 then return x^3

$ else return x^2

$ endif

$endfunction

>plot2d("f3",-1,1):

If a multi-line function does not return a value, it returns the value none, a string

consisting of the ascii character 1, which will never print.

It is possible to enter multi-line functions in the text window, either directly, or with

the help of the internal editor. To use the internal editor, press F9 in the function

line. Have a look into Section 3.7 for details.

When replaying the notebook, the user has to go through the function de�nition

line by line. To avoid this, end the function line with three dots ... This will read

the function with one return. To make things easier, the ... string is automatically

appended by the internal editor.

Besides with the internal editor, a function can be edited by clicking into it. Use

Ctrl-Return to split a line or insert a new line, and Ctrl-Return to join a line to

the previous line. Moreover, you can use Alt-Back to delete a line or Alt-Insert

to insert a new line.

To start editing in the notebook window at the �rst de�nition of the function, press

Ctrl-Return at the end of the line starting with function. This will add ... at

the end of the line. To exit the editing press Return at the last line. The editor will

add endfunction for you.

It might be more comfortable to edit all the functions needed in a notebook in an

external �le. Edit the �le with the external or internal editor, save it with the

filename.e extension, and load it into EMT with load filename. The �le should

be in the same directory as the notebook. Otherwise, the load command must

provide the complete path to the �le.

You can use any simple text editor to edit EMT �les. Euler comes with je, a Java

editor. There is also an internal editor. Both editors will use a temporary �le in

the user directory if they are started on empty lines. They will use the �le of the

load command if the current line starts with such a command. To start the internal

editor for editing �les, press F9 in a line starting with load, to start the external

editor use F10.
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Example

Enter the following text into the internal editor (or paste it from the documentation),

and press OK. Simply press F9 or F10 in an empty line to start the editor with a

temporary �le. The text between comment and endcomment will be printed as a

comment while loading.

comment

Definition of f3(x).

endcomment

function map f3 (x)

if x<0 then return x^3

else return x^2

endif

endfunction

This is how the notebook looks.

>load "C:\Users\ReneEMTEulerTemp.e"

Definition of f3(x).

>f3(-2:2)

[-8, -1, 0, 1, 4]

Within an EMT function, comments can be entered at any place with //, or at

the beginning of the line with ##. The ## comment lines directly at the start of

the function de�nition are used as help lines. These lines are printed with help

functionname.

Example

We enter the following code with the internal editor. To do this, type function

into an empty line, and press F9. In the internal editor, paste or type the following

lines. End the editor with the OK button, and press return to de�ne the function.

function map sinctest (x) ...

## Computes sin(x)/x taking care of x=0

if x~=0 then return 1

else return sin(x)/x

endif

endfunction
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sinctest then works just like any other function, and help sinctest prints help

for this function.

>plot2d("sinctest",0,2pi);

>help sinctest

sinctest is an Euler function.

function map sinctest (x)

Entered from command line.

Computes sin(x)/x taking care of x=0

All pre-de�ned EMT functions contain help lines. The �rst help line should contain a

function summary, since this line is shown in the status line as immediate help, after

the user has entered the opening bracket for the function parameters. Moreover,

>help util.e

will print all function de�nitions in the EMT �le util.e, including the �rst line of

the help. You can also enter util.e in the help window to see this information.

An EMT �le with functions can also contain items for the user menu. These items

are commands the user can paste at the current cursor positions. The commands

can contain placeholders like ?expression. If the user starts typing in front of a

placeholder the placeholder is removed. The cursor right key positions the cursor

to the next placeholder. The syntax for the menu is as follows.

submenu My Functions

addmenu myfunction("?expression",?xstart)

addmenu ?variable=solve("?expression",?xstart)

The submenu can be omitted. In this case a submenu with the �le name will be

used. Weather the command is a full command as in the second example or only a

function is a matter of taste.

Euler uses typeless variables and parameters by default. To avoid strange error

messages and bugs, it is possible to require a type for a parameter of a function.

Enter the type after the variable separated by :.

In the following example, we do not want to use the function for complex numbers

or intervals, since it will no longer work properly.
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>function map signum (x:real) ...

$ if x<0 then return -1;

$ elseif x==0 then return 0;

$ else return 1;

$ endif;

$endfunction

>signum(I)

Function signum needs a real for x

Error in map.

Error in:

signum(I) ...

^

There are the following types for parameters.

Further Information

real real numbers

complex complex or real numbers

interval intervals or real numbers

numerical any number

integer integer numbers

positive positive numbers

nonnegative non-negative numbers

scalar numbers, but not matrices or vectors

vector row vectors of numbers

column column vectors of numbers

natural short for nonnegative integer scalar

index short for positive integer scalar

indices short for positive integer vector

number short for real scalar

string strings

cpx compressed sparse matrices

Some of these types can be combined. E.g., real scalar means a real number, not

a complex number or an interval, which is also not a vector or a matrix. string

vector allows only vectors of strings.

Overwriting built-in or pre-de�ned functions is not allowed by default. With the

keyword overwrite, this is possible nevertheless. To access a built-in function with

the same name, prepend an underscore.

>function overwrite sin(x) := _sin(rad(x))
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>sin(45)

0.707106781187

>_sin(45°)

0.707106781187

Rede�ning built-in functions must be done with care. The rede�ntion of sin, which

works for degrees, is not recommended, of course. It is wiser to use a separate name

line sindeg for this purpose.

To write a comment on a function im Maxima there are special comment functions.

For Maxima functions, use maximafunction.

>function D(u,x,y) &&= diff(u,x,2)+diff(u,y,2)

diff(u, x, 2) + diff(u, y, 2)

>maximafunction f(u,x,y) ...

$ ## Laplace of u

$endfunction

>help &f

function &f (u, x, y)

Entered from command line.

Laplace of u

>:: D(realpart((x+I*y)^4),x,y)

0

8.2 Functions and the Matrix Language

Many functions work for matrices automatically. This is so because expressions in

EMT work for matrix and vector input. However, if the function contains control

structures it will usually not work for vector input.

EMT can vectorize a function to matrix arguments. The easiest way is to append map

to the function name as in fmap(v). Alternatively, there is a function map("f",...),

which maps the function f to the other arguments.

But a function can also be de�ned as a mapping function. In this case, the function

must have scalar parameters, and must return a scalar, not a vector. EMT will

automatically map the function to the elements of the matrix.
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>function map f(x:number) ...

$ if x<0 then return x^2

$ else return x^3

$ endif

$endfunction

>f(-1:0.5:1)

1 0.25 0 0.125 1

The function would not work for vector input without mapping. The reason is,

that the if does not branch down to the elements of the vector x. By default, if

conditions for vectors are deprecated, and need to be replaced by e.g. all(x>0).

This avoids errors with vector arguments for non-vectorized functions. But it does

not help in mapping to the elements.

By the way, conditions on vectors make sense in many cases, e.g. for a �xpoint

iteration, as in the following example.

>A=[0.2,0.5;0.4,0.6]; b=[1;1];

>function fixpointiter (x) ...

$ global A,b;

$ repeat

$ xnew=A.x-b;

$ if all(xnew~=x) then return xnew endif;

$ x=xnew;

$ end;

$endfunction

>fixpointiter([0;0])

-7.5

-10

Arguments can be protected from mapping with the semicolon. This works either

at runtime or at compile time of the function.

Example

We want to evaluate with di�erent polynomials depending on x > 0 or x � 0. The

evaluation points and the polynomials shall be parameters of f. Since the function

does not work for vector values, we de�ne it using map. But we do not want to map

f to the polynomial coe�cients, of course. The semicolon in the list of parameters

prevents the mapping.
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>function map f(x:scalar; p:vector, q:vector) ...

$ if x>0 then return polyval(p,x)

$ else return polyval(q,x)

$ endif

$endfunction

>plot2d("f(x,[0,1,2],[0,1])",-1,1); ...

>textbox("p(x)",x=0.3,y=0.1,w=0.2,>center); ...

>textbox("q(x)",x=0.8,y=0.1,w=0.2,>center):

Figure 8.1: Function with two branches

This example could also be done in the following way. We compute the functions

everywhere and use logical vectors to combine the functions. Note that true=1 and

false=0 in EMT.

>function f(x,p,q) := (x>0)*polyval(p,x)+(x<=0)*polyval(q,x);

Example

The quick computation of Chebyshev polynomials uses di�erent algorithms for x <

1, x 2 [�1; 1] and x > 1. Note, that the following function is already contained in

EMT as cheb.
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>function overwrite map cheb (x: number, n: nonnegative integer)

$ signum=-mod(n,2)*2+1;

$ if x>1 then

$ w=(x+sqrt(x^2-1))^n;

$ return (w+1/w)/2;

$ elseif x<-1 then

$ w=(-x+sqrt(x^2-1))^n;

$ return signum*(w+1/w)/2;

$ else

$ return cos(n*acos(x));

$ endif;

$endfunction

Now we can compute many Chebyshev polynomials of di�erent degrees at once

combining a row and a column vector. The vectorization with the keyword map

handles this for us.

>x:=-1.1:0.01:1.1; n:=(1:4)’; plot2d(x,cheb(x,n)):

8.3 Multiple Return Values

Often we need to return multiple return values from a function. We do not want

to use global variables for this. Instead, EMT can return more than value with the

return statement. The syntax for this uses curly brackets around comma separated

values.

Of course, these return values can be assigned to multiple variables. The list of

variables is enclosed by curly brackets too.

Example

We sort two values, and return both in the correct order.

>function sort2 (a,b) ...

$ if a<b then return {a,b}

$ else return {b,a}

$ endif

$ endfunction

>{x,y}:=sort2(2,3); x, y,

2

3

>{x,y}:=sort2(3,2); x, y,

2

3
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Figure 8.2: Chebyshev polynomials T1 to T4

Example

To sort a vector EMT has the sort function. The function returns the sorted vector,

and the new indices of the elements, such that in the following example i[ind] is

the sorted vector j. This is useful to permute any other vector in the same way.

>i:=shuffle(6:10)

[7, 10, 8, 6, 9]

>{j,ind}=sort(i); j

[6, 7, 8, 9, 10]

>ind

[4, 1, 3, 5, 2]

>i[ind]

[6, 7, 8, 9, 10]

It is a bit tricky to get the inverse permutation. However this can be done by sorting

the indices.
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>{k,invind}=sort(ind);

>j[invind]

[7, 10, 8, 6, 9]

Further Information

find Finds a number in a sorted vector.

lexsort Sort the rows of a matrix in lexicographical order.

8.4 Global Variables

Inside a function, only the local variables and the parameters are visible. Local

variables are the variables declared in the function, or the parameters with default

values.

>C = 2pi

6.28318530718

>function test (x) ...

$return C*x

$endfunction

>test(5)

Variable C not found!

Use global or local variables defined in function test.

Try "trace errors" to inspect local variables after errors.

test:

return C*x

Error in:

test(5) ...

^

Global variables de�ned on the command line are not visible in multi-line func-

tions. An exception are global variables ending with $, which are visible from every

function. Those variables should be used for units. This is used to de�ne units.

>C$ = 2pi

6.28318530718

>5C

31.4159265359

>function test (x) ...

$ return C$*x

$ endfunction

>test(5)

31.4159265359
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Moreover, any global variable can be changed with setglobal var to be visible in

functions.

To access invisible global variables, use the useglobal command in the function,

or the command global varname. Note that one-line functions always contain the

useglobal statement. So they can see global variables.

>function test(x) := C*x

>type test

function test (x)

useglobal; return C*x

endfunction

8.5 Reference Parameters

EMT passes variables by reference. However, it is not possible to assign a new value

to a variable which is passed as an argument to the function. This will always create

a new local variable with the same name.

Example

In the following example we set the diagonal of a global matrix to some given value.

>function setA (A,s) ...

$ A=setdiag(A,0,s);

$ endfunction

>A:=[1,2;3,4]

1 2

3 4

>setA(A,4);

>A // is unchanged!

1 2

3 4

You could of course access the variable A with global A instead of using a parameter.

To circumvent this restriction for parameters, start the name of the parameter with

a %. In this case, changing the parameter will actually change the value of any

variable passed to it.
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>function setA (%A,s) ...

$ %A=setdiag(%A,0,s);

$ endfunction

>A:=[1,2;3,4]

1 2

3 4

>setA(A,4);

>A

4 2

3 4

There is an exception to this rule. A matrix can be changed even if the name of

the parameter does not start with %. I.e., new values can be assigned to the matrix

elements or to sub-matrices. The behavior is the same as in other programming

languages.

>function test (v) ...

$ i=nonzeros(v==4);

$ v[i]=0;

$ endfunction

>w=1:6

[1, 2, 3, 4, 5, 6]

>test(w); w

[1, 2, 3, 0, 5, 6]

One of the functions in EMT that uses this feature is pivotize. It performs one

typical step of the Gau� algorithm.

>fracformat(10);

>A=[1,2,3,4;5,6,7,8;9,10,11,12]

1 2 3 4

5 6 7 8

9 10 11 12

>pivotize(A,2,2)

-2/3 0 2/3 4/3

5/6 1 7/6 4/3

2/3 0 -2/3 -4/3

Here the value of the matrix A is indeed changed. The function could also have been

implemented in a way such that we had to write an assignment of the result after

we called it.
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>A = pivotize(A,2,2);

In fact many built-in functions of EMT work this way. E.g., setdiag sets a diagonal

of a matrix to a new value. It does not change the matrix, but it returns a new copy

of the matrix. To implement such a function have a look at the following example.

It makes a copy of the matrix before it does any changes.

>function zerodiag (A) ...

$ B=A;

$ loop 1 to min(rows(A),cols(A));

$ B[#,#]=0;

$ end;

$ return B;

$ endfunction

>A=[1,2;3,4]; zerodiag(A)

0 2

3 0

>A

1 2

3 4

8.6 Default Values

EMT functions can have default values for parameters. If there is no argument for

a parameter with a default value, the default value is used. Parameters with default

values can also be set with assigned arguments.

>function f(x,a=4) := a*x

>f(5)

20

>f(5,6)

30

>f(5,a=7)

35

>f(5,7,b=6)

Argument b not in parameter list of function f.

...
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Assigned arguments can be passed to a function only to overwrite default values of

parameters. The reason for this restriction is to prevent typos in parameter names

which happens easily. If the variable name is not in the parameter list an assigned

argument is not allowed.

But it is possible to force a variable in the function with :=, even if the variable was

not in the list of variable with default values.

>function f(x) := x*a

>f(6,a:=5)

30

If the function is de�ned with the modi�er allowassigned this is possible with a

simple =.

An exception to this rule is the evaluation of an expression, which allows assigned

arguments for variables in the expression. We already know that the variable names

x, y etc. are taken from the list of arguments automatically.

>"a*x"(5,a=7)

35

Another important di�erence between expressions and functions is that expressions

can see global variables.

The utility functions plot2d and plot3d, as well as many other functions in EMT,

use a mixture of parameters with default values and assigned parameters.

>plot2d("x^3-x",color=green);

8.7 Control Structures

Control structures change the ow of execution in a function. There are two types:

conditional branches and loops.

Conditional branches are possible with the if statement. if always has to end

with endif. After the condition, there is an optional, but recommended then. An

alternative branch is possible with else. elseif works like an if statement in the

else branch. But only one endif is needed.



168 CHAPTER 8. PROGRAMMING EULER

Example

We can implement the signum function in EMT as follows. Note, that EMT has

this function already as sign. When comparing with 0, it is wise to use ~=. This

comparison uses the internal epsilon.

>function signum (x)

$ if x~=0 then return 0

$ elseif x>0 then return 1

$ else return -1

$ endif

$endfunction

If conditions are connected with and or or, they are evaluated only as much as

necessary. This is called a condition shortcut.

>function test (a,b) ...

$ if a^3+1>=0 and b<sqrt(a^3+1) then return true

$ else return false

$ endif;

$endfunction

In this example
p
a3 + 1 is not computed, if a3 + 1 < 0.

These logical operators can only be used in conditions, such as if. To compute a

logical expression, use the ordinary logical operators &&, || of EMT.

>function isbetween(x,a,b) := (x>=a) && (x<=b)

There are also several loops in EMT. The basic repeat loop is an eternal loop. To

break it, use the break statement, preferably inside an if structure.

>function s1

$ n:=1

$ s:=0

$ repeat

$ s:=s+n

$ n:=n+1

$ if n>10 then break; endif;

$ end;

$ return s;

$endfunction



8.7. CONTROL STRUCTURES 169

The until statement breaks the loop if the condition is true. Note that the loop

is continued after until if the condition is not true. There has to be an end after

each repeat.

>function f(x) ...

$ repeat

$ xnew=(x+2/x)/2;

$ until x~=xnew;

$ x=xnew;

$ end;

$ return xnew;

$ endfunction

>longest f(1)

1.41421356237469

There is also a while statement which works like until. But the condition is

reversed.

>function f(x) ...

$ repeat

$ xnew=(x+2/x)/2;

$ while abs(x-xnew)>epsilon;

$ x=xnew;

$ end;

$ return x;

$ endfunction

>longest f(1)

1.41421356237469

A loop can contain several until, while, break or continue (jumps to the start of

the loop).

The loop loop is an integer loop running between two integer values. The for loop

counts a variable (loop index) with an optional step value from the starting value

to an end value. It can also assign the loop index to all values of a vector.

For a demonstration, we use the loops in a command line now. This is possible

within a single command line or a multi-line.

>v=1:10;

>s=0; loop 1 to 10; s=s+v[#]; end; s,

55
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>s=0; for i=1 to 10; s=s+v[i]; end; s,

55

>s=0; for i=10 to 1 step -1; s=s+v[i]; end; s,

55

>s=0; for x=v; s=s+x; end; s,

55

Of course loops can be put one into the other. This is called a double loop. If the

inner loop is broken with a break statement, the outer loop will continue to run.

Example

For a more complicated example, we write a function, which prints the numbers till

3000 as Roman numbers.

>function roman (x : positive integer) ...

$ if x>3000 then error("x>3000"); endif

$ s:="";

$ repeat

$ if x>=1000 then s:=s|"M"; x:=x-1000;

$ elseif x>=900 then s:=s|"CM"; x:=x-900;

$ elseif x>=500 then s:=s|"D"; x:=x-500;

$ elseif x>=400 then s:=s|"CD"; x:=x-400;

$ elseif x>=100 then s:=s|"C"; x:=x-100;

$ elseif x>=90 then s:=s|"XC"; x:=x-90;

$ elseif x>=50 then s:=s|"L"; x:=x-50;

$ elseif x>=40 then s:=s|"XL"; x:=x-40;

$ elseif x>=10 then s:=s|"X"; x:=x-10;

$ elseif x>=9 then s:=s|"IX"; x:=x-9;

$ elseif x>=5 then s:=s|"V"; x:=x-5;

$ elseif x>=4 then s:=s|"IV"; x:=x-4;

$ elseif x>=1 then s:=s|"I"; x:=x-1;

$ else break;

$ endif;

$ end;

$ return s;

$ endfunction

>roman(1968)

MCMLXVIII

Functions can call themselves recursively (recursive functions). This yields very

elegant programs. The stack for recursive calls is limited, however.
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Example

We breakup a string in substrings separated by a blank. The function strfind �nds

a string in another string. If the string contains a blank, we print the �rst part, and

proceed to scan the second with a recursive call.

>function breakup (str) ...

$ n=strfind(str," ");

$ if n>0 then

$ substring(str,1,n-1),

$ breakup(substring(str,n+1,-1));

$ else

$ str,

$ endif;

$endfunction

>breakup("This is a test");

This

is

a

test

We remark that this kind of splitting of a string can be done with strtokens.

Moreover, there are strxfind and strxrepl for a search with regular expressions.

Further Information

and, or Connects conditions in if (with shortcut).

&&, || Boolean \and" and \or", also for vectors.

error(String) Error message and function abort.

index Alternative for the loop index #.

8.8 Functions as Parameters

Many functions in EMT expect an expression or a function name. Examples are

plot2d or plot3d. In this section, we explain how to write those functions.

To evaluate a function given by name, simply use a variable fvar containing the

name, and call the contained function as in fvar(...). To check if a string variable

contains the name of a function, you can use isfunction.

To evaluate an expression contained in a string, you can use evaluate or expr().
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>function test(x,f$)

$ return f$(x)

$ endfunction

>test(2,"sin")

0.909297426826

>test(2,"x^2")

4

Suppose f is called inside g(f), where f is given as a string parameter to g. Then we

need a way to pass additional parameters to f via g. This is done using the args()

function and the semicolon ; (semicolon parameters). args() simply denotes all

arguments after the semicolon. As a rule semicolon parameters must be given before

any assigned parameters.

In the following example, we pass the parameter 5 of test to f. The actual call to

f is f(2,5).

>function test (x,f$)

$ return f$(x,args())

$ endfunction

>function f(x,a) := a*x

>test(2,"f";5)

10

The following commands work well, since a is a global variable.

>a:=2; plot2d("x^2-a",1,2);

However, the same commands will not work inside a function, unless a is de�ned

globally. We need to pass the local variable a as a semicolon parameter to the plot

function. Of course, values cannot be passed to expressions in the same way, since

expressions look for variables by name. But variables can be passed by reference to

the function evaluating the expression.

>function test (a) ...

$ plot2d("x^2-a",0,2;a);

$ endfunction

>test(4):
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Example

We compute the Fourier coe�cients of functions numerically. Those coe�cients are

de�ned by

ak =
1

�

Z �

��
f(x) cos(kx) dx

For the integral, we use the adaptive Gau� method as implemented in integrate.

We de�ne a function, evaluating f(x) cos(kx). The function name f and the degree

k will be given to integrate as additional parameters. The function integrate

will pass these parameters to the function it integrates. Using map, we compute the

coe�cients from k = 1 to k = 5.

>function fcos (x,f,k) := f(x)*cos(k*x)

>function map fcoeff(f,k) := integrate("fcos",-pi,pi;f,k)/pi

>function f(x) := x^2

>fracprint(fcoeff("f",1:5));

[-4, 1, -4/9, 1/4, -4/25]

The result can be checked with Maxima.

>&create_list(integrate(x^2*cos(n*x),x,-%pi,%pi)/%pi,n,1,5)

4 1 4

[- 4, 1, - -, -, - --]

9 4 25

Instead of semicolon parameters we can also use collections to pass variables to

functions. The evaluation of a collection as a function works if the �rst element of

the collection is the name of a function or an expression.

>c={{"sin",4}}; c()

-0.756802495308

>c={{"a*x^2",4,a=2}}; c()

32

This can be used to pass a function which requires additional parameters to function

such as plot2d or to an numerical algorithm instead of semicolon parameters.

>function f(x,a) := (x-a)/(x+a)

>integrate({{"f",4}},0,2) // with a collection

-1.24372086487

>integrate("f(x,4)",0,2) // test

-1.24372086487

>integrate("f",0,2;4) // with semicolon parameter

-1.24372086487
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8.9 Maxima at Compile Time

Often, we want to use Maxima to compute derivatives or other expressions. This

can be done using symbolic expressions, as explained in the chapter about Maxima.

But it might be much better, to do this during the de�nition of a function. To call

Maxima at compile time, use the &:... syntax. The expression in the string will

be evaluated by Maxima and the result will be inserted into the function body.

Figure 8.3: xx and Tangent

Example

We write a function for the tangent g(x) to the function xx in a point s. The

derivative of the function is computed while the function is de�ned. To see this,

have a look at the internal print of g.

>function g(x,s) ...

$ return &:s^s+diff(s^s,s)*(x-s)

$ endfunction

>type g

function g (x, s)

return s^s*(log(s)+1)*(x-s)+s^s

endfunction

>plot2d("x^x",0,2); plot2d("g(x,1)",color=red,>add):
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A symbolic one-line function is a shortcut for this. These functions evaluate the

function expression in Maxima at compile time.

Example

The Newton method requires a function, which returns the Jacobian of a function.

We can de�ne such a symbolic function using the following syntax.

>fx &= x*y-1; fy &= x-y;

>function f([x,y]) &= [fx,fy]

[x y - 1, x - y]

>function Df([x,y]) &= jacobian([fx,fy],[x,y])

[ y x ]

[ ]

[ 1 - 1 ]

>newton2("f","Df",[2,1])

[1, 1]

To create such a function for varying expressions, we cannot evaluate at compile

time. However, the Maxima can be called with &"..." at run time. To use the

expression f inside the call to Maxima use the syntax @f.

>function g(t,x,f) ...

$ return f(x)+&"diff(@f,x)"(x)*(t-x)

$ endfunction

>g(0.5,1,"x^x")

0.5

>expr:="x^x"; ...

>plot2d("g",0,1;1,expr,color=red); ...

>plot2d(expr,>add):

We need to call Maxima with a given expression at each call of the tangent function.

Note, that this is not very e�ective. If possible, it is better to call Maxima beforehand

once.
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8.10 Error messages in Euler

EMT is a very exible system, using an interpreter and typeless variables. The

downside of this is that the user is sometimes faced with strange error messages. In

this section, we like to explain some of theses problems.

The �rst versions of EMT used the Matlab style v(i) to access an element of a

vector, as an alternative to v[i]. This opens the door to all sorts of errors. In fact,

the results of v(i) depends on the type of v. For functions, strings and vectors there

is a di�erent meaning. In fact, an expression like (3+4)(4+5) worked, resulting in

an empty vector.

EMT now has ags to prevent these problems. By default, these ags are set. The

user must explicitly de�ne the function as a relaxed function, if he wants to use

the relaxed style. To do this, use the command relax at the start of the EMT �le

containing the de�nition of the function. This, of course, is not recommended.

Here some examples of error messages you might get.

>v=1:3; v(2)

Unexpected "(". Index () not allowed in strict mode!

In Euler files, use relax to avoid this.

Error in:

v=1:3; v(2) ...

^

>sin[0.4]

sin is not a variable!

Error in:

sin[0.4] ...

^

>(1+4)(5+6)

Unexpected "(". Index () not allowed in strict mode!

In Euler files, use relax to avoid this.

Error in:

(1+4)(5+6) ...

^

>(1+4)[5+6]

Index 11 out of bounds!

Error in:

(1+4)[5+6] ...

^

As mentioned in the section about parameters, untyped parameters may lead to

very cryptic error messages, if a parameter of unexpected type is used.
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>function myplot(f,a,b) := plot2d(f,a,b,color=10,thickness=3,title="test")

>myplot("x^2",-1,1);

>myplot("x^2",-1,1:4);

Plot needs a real vector or matrix!

plot2d:

if auto then plotarea(xx,yy); endif;

Try "trace errors" to inspect local variables after errors.

myplot:

useglobal; return plot2d(f,a,b,color=10,thickness=3,title="te ...

It is not really clear what happened. Thus it is much better to avoid this confusion

with typed parameters.

>function myplot(f:string,a:number,b:number) ...

$ plot2d(f,a,b,color=10,thickness=3,title="test")

$ endfunction

>myplot("x^2",-1,1);

>myplot("x^2",-1,1:4);

Function myplot needs a scalar for b

Error in:

myplot("x^2",-1,1:4); ...

^

8.11 Debugging

EMT has some features which help to �nd errors in functions. First of all, you can

trace a speci�c function or all functions.

>function test (x) ...

$ if x>0 then return 1;

$ elseif x==0 then return 0;

$ else return -1;

$ endif;

$ endfunction

>trace test;

Tracing test

>test(-5)

test: if x>0 then return 1;

test: else return -1;

-1

>trace test;

No longer tracing test
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The possible keyboard commands will be printed if you press a key which is not

valid.

>trace on; test(-5)

test: if x>0 then return 1;

Keys :

cursor_down Single step

cursor_right Step over subroutines

cursor_up Go until return

insert Evaluate expression

escape Abort execution

cursor-left Stop tracing

-1

>test(-5)

-1

In this example, I pressed cursor-left. It is possible to evaluate an expression. The

rules for visibility apply with respect to the current function.

>trace on;

>test(-5)

test: if x>0 then return 1;

Expression? >x

-5

-1

It is also possible to trace errors only. This will start tracing on errors and lets you

evaluate expressions at that point. Press return on an empty expression to stop the

evaluation.

>trace errors;

>test(1:10)

Cannot use vectors for conditions, use all(...)!

Maybe you need to vectorize the function with "map".

Expression? >x

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Expression? >

test:

if x>0 then return 1;
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In functions, traceif starts tracing conditionally.

>function test (x) ...

$ traceif x<0;

$ if x>0 then return 1;

$ elseif x==0 then return 0;

$ else return -1;

$ endif;

$ endfunction

>test(5)

1

>test(-5)

test: if x>0 then return 1;

test: else return -1;

-1

There is also the good old printing method to �nd errors. Maybe combined with

throwing an error.

>function test (x) ...

$ if iscomplex(x) then x, error("x is complex"); endif;

$ if x>0 then return 1;

$ elseif x==0 then return 0;

$ else return -1;

$ endif;

$ endfunction

>test(5)

1

>test(I)

0+1i

Error : x is complex

Error generated by error() command

Try "trace errors" to inspect local variables after errors.

test:

if iscomplex(x) then x, error("x is complex"); endif;

EMT can also call a function and catch errors using the function errorlevel.

>{res,err}=errorlevel("1/0");

>err
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1

>{err,res}=errorlevel("1/2");

>err, res

0

0.5

8.12 C Code

EMT can use external DLLs (dynamic link libraries). These libraries can be written

in any language. But for C, the necessary header �les can be found in the installation

directory of EMT. A Tiny C compiler is provided with EMT which can translate a

C �le into a DLL linking the necessary modules. In this introduction, we have to

refer to the documentation for details.

It is also possible to write single C functions and bind them to DLLs which are

automatically loaded after the compilation.

Example

For an example, we program the arithmetic geometric means starting with two

values a0 < b0. I.e.,

an+1 =
p
anbn; bn+1 =

an + bn
2

:

We do that in EMT �rst to be able to check the result.

>function map agm1 (a:positive number,b: positive number) ...

$ repeat

$ {a,b}={sqrt(a*b),(a+b)/2};

$ until a~=b;

$ end;

$ return a

$ endfunction

>agm1(1,2)

1.45679103105

Since we have vectorized the function, we can use it for vector input too.

>agm1(1:0.1:2,2)

[1.45679, 1.51644, 1.57449, 1.63117, 1.68663, 1.74101, 1.79442,

1.84695, 1.89868, 1.94968, 2]
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Another option is to use iterate.

>iterate("[sqrt(x[1]*x[2]),(x[1]+x[2])/2]",[1,2])

[1.45679, 1.45679]

Now, let us compile this iteration in C. The easiest method is to do just one iteration

in C, and to do the vectorization in EMT. Let us �rst show the C code.

>function tinyc agm2 (a,b,eps) ...

$ ARG_DOUBLE(a); ARG_DOUBLE(b);

$ CHECK(a>0 && b>0,"Need positive reals!");

$ ARG_DOUBLE(eps);

$ CHECK(eps>0,"Need a positive epsilon!");

$ while (1) {

$ if (fabs(a-b)/fabs(a+b)<eps) break;

$ double h=sqrt(a*b);

$ b=(a+b)/2; a=h;

$ }

$ new_real(a);

$ endfunction

>agm2(1,2,epsilon)

1.45679103105

The C macros ARG ... take the values from the stack of EMT and make the values

usable for C. E.g., ARG DOUBLE(a) takes the �rst argument and de�nes a double-

Variable a for C. To place the result on the stack of EMT we have called new real.

The C macro CHECK throws an error message, if the functions is not user properly.

>agm2(-1,2,0)

agm2 returned an error:

Need positive reals!

Error in:

agm2(-1,2,0) ...

^

To vectorize such a function in EMT we build a function which calls the C code.

>function map agm3 (a,b,eps=epsilon()) := agm2(a,b,eps);

>agm3(1:0.1:2,2)

[1.45679, 1.51644, 1.57449, 1.63117, 1.68663, 1.74101, 1.79442,

1.84695, 1.89868, 1.94968, 2]



182 CHAPTER 8. PROGRAMMING EULER

Another option is to do the vectorization in C. This is a bit tricky if we want to allow

one of the vectors to be a scalar. We use other macros to read the matrix from the

stack of EMT and to generate a matrix for the result. Note, that the vectorization

still does not work for matrix input.

>function tinyc agm4 (a,b,eps) ...

$ ARG_DOUBLE_MATRIX(av,ra,ca); ARG_DOUBLE_MATRIX(bv,rb,cb);

$ CHECK(ra==1 && rb==1 && ca>0 && cb>0,

$ "Need row vectors of real numbers");

$ int c=(ca>cb)?ca:cb;

$ ARG_DOUBLE(eps); CHECK(eps>0,"Need positive epsilon");

$ RES_DOUBLE_MATRIX(cv,1,c);

$ for (int i=0; i<c; i++) {

$ double a=av[i<ca?i:0],b=bv[i<cb?i:0];

$ while (1) {

$ if (fabs(a-b)/fabs(a+b)<eps) break;

$ double h=sqrt(a*b);

$ b=(a+b)/2; a=h;

$ }

$ cv[i]=a;

$ }

$ endfunction

>agm4(1:0.1:2,2,epsilon)

[1.45679, 1.51644, 1.57449, 1.63117, 1.68663, 1.74101, 1.79442,

1.84695, 1.89868, 1.94968, 2]

To compare the speed of the solutions, we use tic and toc. Indeed, the C solution

is much faster.

>tic; agm1(1:0.0001:2,2); toc;

Used 0.134 seconds

>tic; agm3(1:0.0001:2,2,epsilon); toc;

Used 0.022 seconds

>tic; agm4(1:0.0001:2,2,epsilon); toc;

Used 0.003 seconds

8.13 Python Code

If Python is installed properly it can be called from EMT. There is an intermediate

DLL for this which is installed with EMT. It takes care of the translations between

the data types of EMT and Python.
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On my system, I have installed Anaconda. This version of Python contains Mat-

Plotlib and other libraries.

>>> print sys.version

2.7.7 |Anaconda 2.0.1 (64-bit)| (default, Jun 11 2014, ...

It is possible to enter the results of MatPlotlib into the EMT notebook. The follow-

ing is a very simple plot. There are more elaborate and more beautiful examples on

the home page of MatPlotlib.

>>> from pylab import *

>>> t = arange(0.0,2.0,0.01)

>>> s = sin(2*pi*t)

>>> plot(t,s)

>pyins()

Figure 8.4: Very simple Python Plot

The function pyins puts a PNG �le in the user home directory of EMT. For more

information, consult the documentation of Python in EMT.
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Besides calling Python directly, Python functions can be de�ned and called from

EMT.

Example

Let us redo the arithmetic geometric mean from the previous section in Python.

>function python agm5 (a,b,eps) ...

$ import math

$ a=float(a)

$ b=float(b)

$ while abs(a-b)/abs(a+b)>eps:

$ h=math.sqrt(a*b)

$ b=(a+b)/2

$ a=h

$ return a

$ endfunction

>agm5(1,2,epsilon)

1.45679103105

The speed is only slightly better than EMT if we vectorize this later.

>function map agm6 (a,b,eps=epsilon()) := agm5(a,b,eps);

>tic; agm6(1:0.0001:2,2); toc;

Used 0.054 seconds

If we vectorized in Python the speed would improve.

Instead of calling one Python command on each line or writing a Python function,

we can write a dummy function which will be executed immediately. It is merely a

collection of Python commands.

>function python ...

$ s=0

$ for i in range(1,101):

$ s+=i

$ print s

$ endfunction

5050

Calling functions of EMT from Python is also possible. It is even possible to call

an EMT function by name. For this, see the tutorial about Python in EMT.
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Statistics

9.1 Random Numbers

EMT can generate vectors and matrices �lled with random numbers. The func-

tion random generates a matrix of numbers equi-distributed in [0; 1], and normal

generates 0-1 normal distributed numbers.

>random(10)

[0.87411, 0.381891, 0.433033, 0.764686, 0.340088, 0.551344,

0.814243, 0.43166, 0.0914262, 0.14314]

>a=random(1000000); mean(a), dev(a)

0.49998211665

0.288726587903

>normal(10)

[-1.53286, 1.1423, -1.49752, 1.33404, 0.889909, 0.0095027,

0.058976, 0.803505, -1.01251, -0.018801]

>a=normal(1000000); mean(a), dev(a)

-0.000383388642921

0.999590841865

>normal(2,2)

-0.179568 0.133036

0.84618 1.96802

EMT starts with the same random sequence at each run. seed can be used for

setting a �xed start value. One can use daynow for a seed speci�c at the current

point in time.

185
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>seed(1/2); random, random

0.292592617623

0.477948650078

>seed(1/2); random

0.292592617623

>seed(daynow); random

0.612769859417

For more convenience, there is the function randnormal wich allows to change the

parameters of the normal distribution. We generate 10000 normal distributed values

with mean value 1000 and standard deviation 5, and plot a histogram of the values.

The function plot2d can compute and display a histogram of the data automatically.

We add the density of the normal distribution using qnormal.

>a:=randnormal(1,10000,1000,5); ...

>plot2d(a,distribution=20,style="/"); ...

>plot2d("qnormal(x,1000,5)",color=red,thickness=2,>add):

The distribution plot could also be set inside a plot rectangle. All bounds must be

speci�ed.

>plot2d(a,distribution=20,a=970,b=1030,c=0,d=0.1,style="/"):

For more control, the function histo prepares the data for the histogram plot,

computing the frequencies in a given number of intervals or a vector of interval

bounds.

To adjust this to the normal distribution we must take care of the length of the

intervals and the number of random numbers. The expected number of data in a

small interval of length d at the point x is nd g(x). So we divide the count of data

in each interval by dn. This should be close to the density function g.

>n=10000; a:=randnormal(1,n,1000,5); ...

>d=2; {x,y} = histo(a,v=980:d:1020); ...

>plot2d(x,y/(n*d),>bar,style="/"); ...

>plot2d("qnormal(x,1000,5)",color=red,thickness=2,>add):

We can also count the number of elements in subintervals using getfrequencies

instead of using the plot function histo.
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Figure 9.1: Normal distributed values

>a=random(1000000);

>getfrequencies(a,0:0.2:1), sum(%)

[199750, 200668, 199954, 200034, 199594]

1000000

For discrete values, we can use getmultiplicites. In the following example,

intrandom generates 600 integer random variables from 1 to 6 to simulate 600

throws of a die.

>a=intrandom(1,600,6);

>getmultiplicities(1:6,a)

[107, 97, 90, 110, 95, 101]

There are many more random variables which can be used for Monte Carlo methods.

For an overview, see the documentation of the statistical functions in EMT.

The generation of random variables is good for Monte Carlo simulations. For an

example, we determine the mean maximal value of 10 uniform random values in
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[0; 1]. The expected value for this is

10

11
= 0:909090 : : :

>n=1000000; m=10; x=random(n,m);

>y=max(x); mean(y’)

0.909089448749

One must be careful to program big loops in EMT. Matrix languages are not very

e�cient for this. If it is unavoidable a bit of C or Python code can be used. Often

a clever vectorization is possible. This will be faster even if it looks worse on �rst

sight.

Example

We ask how long it takes to get two successive 6 in die throws. The answer is the

famous number 42.

>function simulate (n) ...

$ v=zeros(n);

$ m=500;

$ loop 1 to n;

$ x=intrandom(1,m,6);

$ v[#]=firstnonzero(x[1:m-1]==6 && x[2:m]==6)+1;

$ end;

$ return mean(v);

$ endfunction

>tic; simulate(1000000), toc;

41.978379

Used 31.081 seconds

This code will take some seconds. It could be made slightly faster by taking a

smaller m and taking an appropriate action if two successive 6 are not among the

random numbers.

Of course, a version in Tiny C is faster. But we have to use the random number

generate of Tiny C. In Python, we could call the random number generator of EMT,

but Python is a bit slower.
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>function tinyc simulate (n) ...

$ ARG_DOUBLE(x);

$ int n=(int)x;

$ CHECK(n>=1,"Need a positive integer");

$ double sum=0.0;

$ for (int k=0; k<n; k++) {

$ int a=(rand()%6)+1,b=(rand()%6)+1;

$ int count=2;

$ while (1) {

$ if (a==6 && b==6) break;

$ a=b; b=(rand()%6)+1;

$ count++;

$ }

$ sum=sum+count;

$ }

$ new_real(sum/n);

$ endfunction

>tic; simulate(1000000), toc;

42.020853

Used 0.731 seconds

Example

Sometimes, own methods must be implemented for special distributions. Assume

we want to use the density function

g(x) = cos(x)

for 0 � x � �=2. This is a probability distribution Y since

Z �=2

0
cos(x) dx = 1:

One way to get a random number generator is to apply the inverse function of the

distribution function sin(x) to a uniform random variable X in [0; 1]. This works

because of

P (arcsin(X) � c) = P (X � sin(c)) = sin(c) = P (Y � c):

Thus arcsin(X) has the correct distribution for a uniform random variable in [0; 1].

>function randcos(n,m) := asin(random(n,m));

>plot2d(randcos(1,10000),>distribution,style="/"); ...

>plot2d("cos",>add,color=red):
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Another method is the rejection method. We produce uniformly distributed random

variables in the rectangle [0; �=2]�[0; 1] and reject those that are not under the graph
of the function cos(x).

>function randcos (n) ...

$ x=random(n)*pi/2; y=random(n);

$ return x[nonzeros(y<cos(x))];

$endfunction

>plot2d(randcos(1000000),>distribution,style="/"); ...

>plot2d("cos",>add,color=red):

To see this method in graphical form, we show the points in a plot and mark the

rejected points in red.

>n=10000; x=random(n)*pi/2; y=random(n);

>i=nonzeros(y<cos(x)); c=ones(size(x)); c[i]=red;

>aspect(pi/2);

>plot2d(x,y,>points,color=c,style=".");

>plot2d("cos",>add,thickness=2):

Figure 9.2: Rejection Method

EMT can also shu�e vectors with shuffle. As an example we generate lottery

numbers 6 out of 49.
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>z:=shuffle(1:49); sort(z[1:6])

10 13 27 31 43 48

There is also a package for permutations. It allows to compute with permutations

and to let a function walk over all permutations of n numbers. For more, see the

demo on Monte Carlo methods among the tutorials for EMT.

9.2 Distributions

EMT can compute many distributions and their inverses. The most important one

is the normal distribution.

Example

At 1000 throws of a coin the expected numbers of heads is distributed with mean

value 500 and standard deviation

� =
p
1000 � 0:5 � 0:5:

We compute the probability to get more than 520 times head, and when the proba-

bility gets less than 0.1% approximating the binomial distribution with the normal

distribution.

>n=1000; p=0.5; ...

>m=p*n; s=sqrt(n*p*(1-p)); ...

>1-normaldis(520,m,s)

0.102951605366

>ceil(invnormaldis(99.9%,m,s))

549

Note that the function normaldis in EMT scales in another way than the func-

tion erf, which is also available. All distributions in EMT are implemented as

distribution functions, which grow from 0 to 1.

The approximation to the binomial distribution in this example can also be com-

puted exactly.

>1-bindis(520,1000,0.5)

0.0973831642309

>invbindis(99.9%,1000,0.5)

548.347804004
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Figure 9.3: Normal Distribution normaldis(x)

EMT contains many more distributions. For details, see the reference. Many exam-

ples are contained in the tutorial about statistics.

Further Information

chidis chi distribution.

tdis Student T-distribution.

invtdis Inverse T-distribution.

fdis F-distribution.

9.3 Data Input and Output

It is often necessary to read and write data �les. EMT supports this with a lot of

functions on di�erent levels. EMT can open only one �le for read and one for write

at each time. To open a �le use the open command, and to close it, use the close

command. Some functions open and close �les automatically.

Without a path, �les are opened in the current directory. Opening or saving a

notebook sets the current directory to the notebook directory. Another good place

for notebooks is the user folder Euler Files in the home directory of the user. To

get the path to this folder use userhome.

>filename=userhome()|"test.dat";
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In the following, we generate 10000 random numbers, and write these numbers into

a �le test.dat. Then we read these numbers back from the �le. The high level

functions writematrix and readmatrix open and close the �le automatically. The

matrix is written line by line. To avoid very long lines, it is better to use a column

vector for the random matrix.

>n=10000; a=random(n);

>writematrix(a’,filename);

>b=readmatrix(filename)’;

>longest max(abs(a-b))

5.551115123125783e-017

The vectors are not completely identical since a decimal output is used in the �le.

To append another matrix to the same �le, we open the �le in the appending mode

"a". The write mode "w" would delete the content of the �le. Then we write the

matrix with writematrix, and close the �le. To read both matrices, we open the �le

with the read mode "r", and use readmatrix twice without the �le name parameter.

>open(filename,"a");

>writematrix(random(2,2));

>close();

>open(filename,"r");

>readmatrix(); // skip random vector

>readmatrix()

0.770952 0.402944

0.648543 0.0532717

>close();

There are numerous elementary functions to read and write data. One useful func-

tion is getvector, or getvectorline. This function reads an unknown, but limited

number of numbers (but with a decimal point, not a comma). Intermediate text is

skipped. getvectorline stops at the end of each line. The functions return the

data and the count. Additionally, getvectorline returns the line in string from.

The functions are more e�ective and faster than readmatrix.

In the following example, we use the write command to output a string, and

putchar(10) for a line feed.

>open("test.dat","w");

>write("Two Numbers: 1000 2000"); putchar(10);
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>close();

>open("test.dat","r");

>{v,n,s}:=getvectorline(1000);

>close();

>s

Two Numbers: 1000 2000

>n

2

>v

1000 2000

Another method to read and write data to �les are tables. Tables are frequently

used in statistics to hold data. A table can have a header line, row labels. Each

item in the �le can be a number or a string. Strings are translated to numbers via

string vectors.

In the following example, we generate a table with a number, a yes/no string, and an

age. The function writetable prints the table with the tokens in column replaces

by the strings in the string vector yn.

>data=[1000,1,55;1010,1,58;1020,2,45;1030,2,60]

1000 1 55

1010 1 58

1020 2 45

1030 2 60

>yn=["yes","no"];

>hd=["No","Y/N","Age"];

>writetable(data,labc=hd,tok2=yn,labr=1:4)

No Y/N Age

1 1000 yes 55

2 1010 yes 58

3 1020 no 45

4 1030 no 60

We can also write the table to a �le. From there, we can read the table with known

translations for the token strings.

>filename=eulerhome()+"test.dat";

>writetable(data,labc=hd,tok2=yn,labr=1:4,file=filename)

>{d,hd,toks,rows}=readtable(filename,tok2=yn,>rlabs);

>d

1000 1 55
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1010 1 58

1020 2 45

1030 2 60

>hd

No

Y/N

Age

>rows

1

2

3

4

Note that >rlabs has to be set, since readtable needs to know about the labels in

each line.

We can also read the table without knowing the translations. Then the token strings

will be selected in the speci�ed columns into a string vector.

>{d,hd,toks,rows}=readtable(filename,ctok=[2],>rlabs);

>toks

yes

no

For special purposes, EMT can scan lines in the �le with regular expressions. The

function strxfind can return the position where a string is found, the matched

string and a vector of sub-matches. The function strxrepl can be used to replace

substrings.

The syntax of regular expressions is quite mighty. You can �nd examples on the

help page of the function.

>{pos,found,v}=strxfind("This is Test34!","([A-Za-z]+)([0-9]+)");

>pos

9

>found

Test34

>v

Test

34

>strxrepl("This is Test34!","([A-Za-z]+)([0-9]+)","$1-$2")

This is Test-34!
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A more elementary way to read data is strtokens. The function can break a string

into tokens with speci�ed separator characters.

>v=strtokens("4 5, 5.6; pi^2;exp(0.1)",";, ")

4

5

5.6

pi^2

exp(0.1)

>for k=1 to length(v); v[k](), end;

4

5

5.6

9.86960440109

1.10517091808

EMT can also read a �le from the Internet via IP. E.g., the function getstock reads

stock data from Yahoo's historical stock data. For details on the implementations,

we refer to the tutorial. You can also study the sources. Enter type getstock in

the help window for this.

>load getstock;

>v=getstock("IBM",day(2012,1,1));

>showstock(v,title="IBM Stock Data"):

Further Information

getline Reads a line as a string.

eof Test if the �le has been read completely.

dir Lists the current directory.

dir("*.e") Lists all EMT �les.

fileremove Deletes a �le.

cd(...) Changes the working directory.

9.4 Statistical Tests

EMT can compute some statistical tests.
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Figure 9.4: Stock Data from the Yahoo

Example

We test a series of 0-1 normal distributed random numbers for the mean value 0.5

with a student-T test. Of course, we will most likely be able to reject the hypothesis

that the sample is from distribution with mean value 0.5 or higher.

>a:=normal(1,20);

>ttest(mean(a),dev(a),20,0.5)

0.00101056390067

For other tests refer to the following table, or to the EMT reference.
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Further Information

tcomparedata Tests two sample on equal distribution.

chitest Test on equal distribution using the �2 test.

tabletest Test on independence of table rows.

varanalysis Test on the same mean value.

mediantest Test on same mean value.

ranktest Test on same mean value.

wilcoxon Compares mean values.



Chapter 10

Numerical Algorithms in Euler

10.1 Differential Equations

Solving di�erential equations numerically is one of the important applications of

a software like EMT. In this section, we discuss various methods and methods to

obtain guaranteed inclusions.

For a start, we solve the intial value problem

y0 = �y

x
; y(1) = 1:

using the Runge method. The solution is y = 1=x. runge accepts an expression in

x and y, or a function. We can either get all intermediate values, or only the values

of the solution at selected points. In the latter case, we need to specify the number

of points to be computed between our selected points.

>x=1:0.01:10; y=runge("-y/x",x,1); // get all 1000 values

>plot2d(x,y):

>y[-1] // should be 1/10

0.1

>runge("-y/x",[1,10],1,100) // get only one value, and use 100 points

[1, 0.1]

A more advanced function is the LSODA algorithm which uses an adaptive step size

and works for sti� equations too. It is the default for the function ode. The algo-

rithms is very good and does not need intermediate points. But it fails sometimes.

199
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Figure 10.1: Solution of a Sti� Equation

The following equation would be solved as y0 = �1 with solution y = 1 � x with

the Runge method. This happens for small c where the Runge method solves the

approximation y0 = 1. But the LSODA algorithm is able to see the barrier at y = 0.

Admittedly, it would be easier to set y0 = 0 for y < 0 to produce such a barrier.

>function f(x,y,c) := -y/(c+y);

>x=1:0.01:4; plot2d(x,ode("f",x,1;0.0001)):

Note that we speci�ed the parameter c for the function f(x,y,c) as a semicolon

parameter in the call to ode. This parameter is passed to f from ode.

The function ode can also work with vector valued functions y. The system of

di�erential equations

u0 =

 
�xu2(x)
�x2u1(x)

!

turns out to be almost periodic. We plot the curve (u1; u2) for x from 0 to �20. As
you see, it is possible to specify x values in decreasing order.

>function f(x,y) := [-x*y[2],-x^2*y[1]]

>x=0:-0.001:-20; ysol=ode("f",x,[1,0]);

>plot2d(ysol[1],ysol[2]):
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Figure 10.2: Periodic Solution

Example

For an example of a second order equation, we solve the initial value problem

y00 = �a sin(y); y(0) = 0; y0(0) = b

using the adaptive Runge method. This second order di�erential equation must be

rewritten into a �rst order equation in the plane.

d

dx

 
y(x)

y0(x)

!
=

 
y0(x)

�a sin(y(x))

!

Then runge and adpativerunge expect a function f(x,y), computing y0. Both y

and y0 have to be row vectors.

>function f(x,y) := [y[2],-a*sin(y[1])]

>a:=1; b:=1;

>x:=0:0.1:10; y:=adaptiverunge("f",x,[0,b]);

>plot2d(x,y[1]):



202 CHAPTER 10. NUMERICAL ALGORITHMS IN EULER

We then want to determine the �rst zero of the solution to get the frequency of

this true pendulum. To do this, we set up a function to solve for y(x), and solve

y(x) = 0 with the secant method.

>function h(x) ...

$ global b;

$ v=ode("f",[0,x],[0,b]);

$ return v[1,2];

$ endfunction

>solve("h",3,4)

3.37150070962

Of course, the solution of the approximating di�erential equation y00 = �ay for the

pendulum has its �rst zero at �. Taking a smaller amplitude b makes the error much

smaller.

>b=0.01;

>secant("h",3,4)

3.14161228868

Example

To solve a boundary value problem

y00 = �a sin(y); y(0) = 0; y(�) = 1

in EMT, we use the shooting method. We set y0(0) = x, and solve y(�) = 1 for x.

>a=1;

>function g(x)

$ v=adaptiverunge("f",[0,pi],[0,x]);

$ return v[1,2]-1;

$endfunction

>secant("g",1)

1.521612414054

EMT can plot the direction �eld of a di�erential equations with the functions

vectorfield and vectorfield2.

The function vectorfield displays a vector �eld for y0 = f(x; y), where y is a scalar

function.
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>vectorfield("-2*x+y",0,2,0,2);

>x=0:0.01:2; y=ode("-2*x+y",x,1);

>plot2d(x,y,>add,color=red,thickness=2):

The function vectorfield2 displays the vector �eld for vector valued functions in

the plane.

>vectorfield2("y","-sin(x)",-2,2,-2,2);

>function f(x,y) := [y[2],-sin(y[1])]

>x:=0:0.01:10; y:=runge("f",x,[0,1]);

>plot2d(y[1],y[2],>add,color=red,thickness=2):

Figure 10.3: Pendulum y00 = sin(y)

With Maxima, we can solve many di�erential equations exactly. Use ode2 for the

general solution. With ic1 and ic2, you can get the constants for initial value

problems or boundary value problems.
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Example

We solve the initial value problem

y00 + y0 + y = sin(x); y(0) = 0; y0(0) = 1

with Maxima, and plot the result in EMT.

>:: eq := ’diff(y,x,2)+’diff(y,x)+y=sin(x)

2

d y dy

--- + -- + y = sin(x)

2 dx

dx

Note the apostrophe in the de�nition of the equation. It prevents the execution of

the diff function. To insert an initial value, use ic2. For more, refer to the tutorial

about di�erential equations or the documentation of Maxima.

>gsol &= ode2(eq,y,x)

- x/2 sqrt(3) x sqrt(3) x

y = E (%k1 sin(---------) + %k2 cos(---------)) - cos(x)

2 2

>sol &= y with ic2(gsol,x=0,y=0,’diff(y,x)=1)

- x/2 sqrt(3) x sqrt(3) x

E (sqrt(3) sin(---------) + cos(---------)) - cos(x)

2 2

>plot2d(&sol,0,2*pi):

To get a guaranteed inclusion for an initial value problem, we can use the function

mxmidgl. This function computes very high derivatives of the di�erential expression

with Maxima. The degree of the approximation can be adjusted with the deg

parameter. We compare the result with the exact solution in Maxima.

>x=linspace(0,pi,100); y=mxmidgl("sin(x)*y",x,1); y[-1]

~7.3890560989303,7.389056098931~

>&ode2(’diff(y,x)=sin(x)*y,y,x); sol &= y with ic1(%,x=0,y=1)
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Figure 10.4: Exact Solution with Maxima

1 - cos(x)

E

>longest sol(pi)

7.38905609893065

This can be used for exact inclusions of integrals. We compute the Gau� normal

distribution.

>0.5+mxmiint("1/sqrt(2*pi)*exp(-x^2/2)",0,2)

~0.977249868051802,0.97724986805184~

>longest normaldis(2)

0.9772498680518208
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10.2 Iteration and Recursion

For recursive sequences, EMT has the functions iterate and sequence. The most

elementary form is iterate, which iterates a recursive sequence

xn+1 = f(xn)

starting from some point x0 until convergence occurs. Convergence is checked with

the internal epsilon. If the iteration cannot �nd a �xed point, you will have to stop

it with the Esc key. Alternatively, you can enter a maximal number of iterations. In

this case, the function returns all xi so far. The function will work for complex, and

even for interval iteration, as long as f is a contracting function and the iterations

starts close enough.

>iterate("cos(x)",1)

0.739085133216

>iterate("cos(x)",1+I)

0.739085+0i

>iterate("cos(x)",~0.7,0.8~)

~0.7390851332142,0.7390851332166~

>iterate("(x+2/x)/2",1,5)

[1, 1.5, 1.41667, 1.41422, 1.41421, 1.41421]

iterate can also handle sequences of vectors. In this case, a function is better than

an expression.

Example

We iterate the arithmetic geometric mean

an+1 =
p
anbn; bn+1 =

an + bn
2

:

>function agm([x,y]) := return [sqrt(x*y),(x+y)/2]

>longest iterate("agm",[1,2])

1.456791031046907 1.456791031046907

A more exible recursive function is sequence. It can handle recursions of the form

xn = f(x1; : : : ; xn�1; n):

iterate returns a row vector with the sequence elements. Make sure, enough start

values are provided.
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>sequence("x[n-1]+x[n-2]",[1,1],10) // Fibonacci numbers

[1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

>sequence("n*x[n-1]",1,6) // factorials

[1, 2, 6, 24, 120, 720]

>sequence("sum(x[n-4:n-1])/4",[1,2,3,4],10) // sliding mean

[1, 2, 3, 4, 2.5, 2.875, 3.09375, 3.11719, 2.89648, 2.99561]

>longformat; v:=sequence("sum(x[n-4:n-1])/4",[1,2,3,4],1000); v[-1]

3

10.3 Fast Fourier Transformation

Figure 10.5: Frequency Analysis with FFT

The Fast Fourier Transformation FFT is a technique, which evaluates trigonometric

sums very quickly in equidistant points. The inverse operation interpolates with

Fourier sums. It turns out that the same fast FFT can be used for the inverse. This

is useful for frequency analysis. For the optimal speed of the function the number

of points should be a power of 2, or at least have only small prime factors.

There is a notebook explaining the FFT in more detail.
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Example

We generate values for the function sin(100x) + cos(200x), add noise, and analyze

the frequencies of the result. The analysis uses FFT to interpolate the values in the

roots of unity. The absolute values of the coe�cients then shows the contribution

of the frequencies. However, the relevant entries are only between frequency 1 and

n=2, were n is the number of data.

>t:=linspace(0,2pi,1023); s:=sin(100t)+cos(200t)+normal(size(t));

>f:=abs(fft(s)); plot2d(f[1:512]);

There are some functions to generate and analyze sound. The following lines gen-

erate a sound, and analyzes its frequencies using FFT, presenting a graphical rep-

resentation.

>t=soundsec(5);

>s=sin(t*440)+sin(t*880)/2;

>analyzesound(s);

The sound can be played using playwave, or stored with savewave. Of course,

sound can be loaded into memory with loadwave too. All these functions work with

a default sampling rate of 22050 Hz. To analyze a sound with changing frequencies,

use mapsound. This function will use a windowed FFT.

FFT can be used to fold two vectors. This is due to the fact, that folding two vectors

is equivalent to multiplying the Fourier transforms. Note that the signal vector is

assumed to be periodic in this case.

Example

Let us fold the vector (�1)k with another vector such that the new vector contains

the averages of three neighboring points.

>k=(-1)^(1:1024);

>f=zeros(size(k)); f[1:3]=[1/3,1/3,1/3];

>k1=real(ifft(fft(k)*fft(f)));

>k1[1:3]

[-0.333333333333, 0.333333333333, -0.333333333333]
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Figure 10.6: Smoothed Random Walk

The folding assumes that the samples are periodic. For simple folding, use fold.

Here is a smoothing example with a plot of the smoothed data. Note that the data

gets shorter if is folded with with vector. In this example,

~ak =
1

10

9X
i=0

ai+k

for k = 1; : : : ; n� 9.

>n=1000; k=cumsum(normal(n));

>plot2d(1:n-9,fold(k,ones(10)/10)):

Graphics can also be handled by Euler, and there is a two dimensional FFT. Graphics

can be loaded into memory with loadpixels, and saved back with savepixels. The

format is an RGB matrix, containing one pixel per entry. To get the red, green and

blue channels, use getred etc. To create an RGB matrix from the channels, use

putred etc., or rgb. To plot such an image into the plot window, use plotrgb.

Alternatively, insert the image into the notebook with insrgb.
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Figure 10.7: Image generated by EMT

>red:=0:0.005:1; green:=red’; blue:=random(cols(red),cols(red));

>M:=rgb(red,green,blue); plotrgb(M);

>insrgb(M);

>savergb(M,userhome()|"test.png");

10.4 Linear Programming

EMT has the Simplex algorithm for linear optimization. The function simplex

maximizes (with >max) or minimizes (by default) a linear target cT � x under the

conditions

A � x � b; x � 0:

Here, A is a matrix, each line containing one inequality.

Example

Maximize

5x+ 8y
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under the conditions

x

10
+
y

8
� 1;

x

9
+

y

11
� 1;

x

12
+
y

7
� 1;

and x; y � 0.

>A=[1/10,1/8;1/9,1/11;1/12,1/7]; b=[1;1;1];

>x=simplex(A,b,[5,8],>max); fraction x

60/13

56/13

Figure 10.8: Feasible Points and Solution

In the case of two variables, EMT can compute and plot the feasible set.

>xa=feasibleArea(A,b);

>plot2d(xa[1],xa[2],>filled,style="/",a=0,b=10,c=0,d=10);

>plot2d(x[1],x[2],>add,>points):
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An integer solution can be found with intsimplex, or with the function ilpsolve

from the LPSOLVE package. The implementation in EMT is due to Peter Notebaert.

>intsimplex(A,b,[5,8],>max)

5

4

>ilpsolve(A,b,[5,8],>max)

5

4

The function simplex assumes inequalities of the form \�". Alternatively, it is

possible to use inequalities \�" or equalities \=" in each or in all conditions. For

this, a vector eq must be provided, containing �1, 0, or 1 for \�", \=", or \�"
respectively. If the vector is only a scalar number, it is valid for all conditions. The

default is �1.

Moreover, it is possible to relax the condition xi � 0 for each or for all variables.

The functions simplex and intsimplex use a row vector restrict, containing ags

0 or 1, for unrestricted or restricted variables. As above, a number can be used for

all variables. The default is 1.

Example

We minimize 2x+y under the condition jxj+ jyj � 1. This condition can be written

as

�2 � x+ y � 2; �2 � x� y � 2:

We solve the problem with and without restrictions.

>A=[1,1;1,1;1,-1;1,-1]

1 1

1 1

1 -1

1 -1

>b=[2;-2;2;-2]

2

-2

2

-2

>eq=[-1;1;-1;1]

-1

1

-1
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1

>c=[2;1]

2

1

>simplex(A,b,c’,eq,0)

-2

0

>simplex(A,b,c’,eq,1)

0

0

The default form of the Simplex algorithm throws an error message, if the problem

has no solution or is bounded. This can be prevented with <check. Then the

algorithm returns a ag. For more information on this, see the reference for simplex.

The function pivotize allows to solve a problem step by step. For an example, we

solve the problem at the start of the chapter. The layout of the Simplex scheme in

the example below contains the target function in the last line.

To see the fractions, we use a fractional output with a width of 10 places.

>A=[1/10,1/8;1/9,1/11;1/12,1/7]; b=[1;1;1]; c=[5;8];

>fracformat(10);

>M=A|id(3)|b_c’

1/10 1/8 1 0 0 1

1/9 1/11 0 1 0 1

1/12 1/7 0 0 1 1

5 8 0 0 0 0

>pivotize(M,2,1)

0 19/440 1 -9/10 0 1/10

1 9/11 0 9 0 9

0 23/308 0 -3/4 1 1/4

0 43/11 0 -45 0 -45

>pivotize(M,1,2)

0 1 440/19 -396/19 0 44/19

1 0 -360/19 495/19 0 135/19

0 0 -230/133 429/532 1 41/532

0 0 -1720/19 693/19 0 -1027/19

>pivotize(M,3,4)

0 1 -280/13 0 336/13 56/13

1 0 480/13 0 -420/13 60/13

0 0 -920/429 1 532/429 41/429

0 0 -160/13 0 -588/13 -748/13
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EMT contains many more algorithms for global optimization or optimization with

restrictions. There is also a basic form of the Newton-Barrier algorithm. Other

algorithms can be implemented easily.

10.5 Exact Scalar Product

Solving a linear system Ax = b sometimes yields large errors, even if the system is

given exactly. This is the case, if the matrix A has a high condition number. I.e., it

has very large and very small eigenvalues. We have

k�xk
kxk � kAk � kA�1kk�bkkbk

with any compatible matrix norm.

Example

Since 123452 � 2 � 13 � 5861501 = 1, the following matrix has large elements, but a

very small determinant. The matrix is almost singular, and not well conditioned.

Consequently, we get large rounding errors in the Gau� algorithm.

>A=[12345,26;5861501,12345]

12345 26

5.8615e+006 12345

>b=A.[1;1]; longest A\b

1.000000021578259

0.99998975447644

If we compute the �rst step of the Gau� algorithm in EMT and Maxima, we clearly

see the problem. The accuracy of the result is only 7 digits.

>B=A; B[2]=B[2]-(B[2,1]/B[1,1])*B[1]; longest B

12345 26

0 -8.100445484160446e-005

>&"12345-5861501/12345*26"()

-8.1004455245e-005

To improve this result, we use a residual iteration. For this, we compute the error

r = Ax� b, and correct the wrong solution x by the solution d of Ad = r. For this

technique to work, we must compute the residuum exactly. To do this, EMT has

an exact scalar product using a long accumulator.
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>x=A\b; longest x

1.000000021578259

0.99998975447644

>r=residuum(A,x,b)

-2.98916e-012

-5.89345e-010

>x=x-A\r; longest x

0.9999999999999999

1.000000000000048

The procedure is implemented in the function xlgs.

>longest xlgs(A,b)

1

1

Figure 10.9: Simple Evaluation versus Exact Evaluation

We remark that it does not help to compute the residuum the simple way. The

residuum will be too inaccurate to help.
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We want to stress here, that the method is only useful for systems, which are given

in an exact way. If the systems contain errors in the parameters, the seemingly

exact results of xlgs have to be checked carefully using interval methods (see the

next section).

Example

The following example is due to Rump et al. The residual iteration can be used

to evaluate badly conditioned polynomials. EMT implements this in the xpolyval

command.

>p=[-945804881,1753426039,-1083557822,223200658];

>t=linspace(1.618015,1.618025,100);

>plot2d(t-1.61801916,polyval(p,t));

>plot2d(t-1.61801916,xpolyval(p,t,eps=1e-17),color=red,>add):

10.6 Guaranteed Inclusions

The residual iteration is useful to �nd exact solutions of exact equations. If the

parameters of the equations are inexact, we can only hope to produce as close

inclusions of the solution as possible.

EMT uses the function ilgs to get a guaranteed and narrow inclusion of the solution

of a linear system. The idea has been described by Rump et al. This is an iteration

using interval arithmetic. The guaranteed inclusion follows from a �x point theorem.

Example

We solve the equation of the last section with ilgs. The experiments below show

that we get a narrow inclusion only if we assume that the equation is exact. Ex-

tending the parameter intervals leads to bad inclusions or even failure. In this case

the parameter intervals include cases, where the system does not have a solution.

>ilgs(A,b)

~0.99999999999999978,1.0000000000000002~

~0.99999999999999978,1.0000000000000002~

>ilgs(~A~,~b~)

~0.9999998615,1.000000139~

~0.9999342,1.000066~

>ilgs(A±0.5,b±0.5)

Error : Pseudo inverse not good enough.
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Error generated by error() command

Try "trace errors" to inspect local variables after errors.

ilgs:

if (rho>=1); error("Pseudo inverse not good enough."); endif; ...

The inclusion method can also be used for non-linear systems, if we can compute

the derivative of the function. EMT implements the interval Newton method. The

derivative can be computed by Maxima.

Example

Compute the solution of e�x = x. The result is a very narrow interval. mxminewton

calls Maxima to compute the derivative automatically.

>inewton("exp(-x)-x","-exp(-x)-1",0,1)

~0.56714329040978362,0.56714329040978406~

>mxminewton("exp(-x)-x",0,1)

~0.56714329040978362,0.56714329040978406~

Example

The interval Newton method is available in several dimensions too. In the following

example, we solve

xy = 1; x2 + y2 = 4:

It is necessary to compute the Jacobian matrix. We use Maxima for this task in

Df at compile time. See the section about programming EMT for an explanation of

this technique.

>f1&=x*y-1; f2&=x^2+y^2-4;

>function f([x,y]) &= [f1,f2]

2 2

[x y - 1, y + x - 4]

>function Df([x,y]) &= jacobian(f(x,y),[x,y])

[ y x ]

[ ]

[ 2 x 2 y ]

>x=inewton2("f","Df",[1,2])

[ ~0.51763809020504115,0.51763809020504203~,

~1.931851652578135,1.931851652578138~ ]
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Figure 10.10: Solution of xy = 1,x2 + y2 = 4

To see the solution, we can use an implicit plot in EMT.

>plot2d(f1,level=0,r=3);

>plot2d(f2,level=0,>add);

>plot2d(middle(x[1]),middle(x[2]),>points,>add):
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levenberg-algorithm, 148

line plots, 140

local variables, 163
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matplotlib, 183
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muli-line commands, 51
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status line, 156
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symbolic, 87
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symbolic functions, 86
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tab key, 71
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